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Abstract

We study an encoding/decoding mechanism accounting for the relative spike tim-
ing of the signals propagating from peripheral nerve fibers to second-order so-
matosensory neurons in the cuneate nucleus (CN). The CN is modeled as a popu-
lation of spiking neurons receiving as inputs the spatiotemporal responses of real
mechanoreceptors obtained via microneurography recordings in humans. The ef-
ficiency of the haptic discrimination process is quantified by a novel definition of
entropy that takes into full account the metrical properties of the spike train space.
This measure proves to be a suitable decoding scheme for generalizing the clas-
sical Shannon entropy to spike-based neural codes. It permits an assessment of
neurotransmission in the presence of a large output space (i.e. hundreds of spike
trains) with 1 ms temporal precision. It is shown that the CN population code
performs a complete discrimination of 81 distinct stimuli already within 35 ms
of the first afferent spike, whereas a partial discrimination (80% of the maximum
information transmission) is possible as rapidly as 15 ms. This study suggests that
the CN may not constitute a mere synaptic relay along the somatosensory path-
way but, rather, it may convey optimal contextual accounts (in terms of fast and
reliable information transfer) of peripheral tactile inputs to downstream structures
of the central nervous system.

1 Introduction

During haptic exploration tasks, forces are applied to the skin of the hand, and in particular to the
fingertips, which constitute the most sensitive parts of the hand and are prominently involved in ob-
ject manipulation/recognition tasks. Due to the visco-elastic properties of the skin, forces applied to
the fingertips generate complex non-linear deformation dynamics, which makes it difficult to predict
how these forces can be transduced into percepts by the somatosensory system. Mechanoreceptors
innervate the epidermis and respond to the mechanical indentations and deformations of the skin.
They send direct projections to the spinal cord and to the cuneate nucleus (CN), which constitutes
an important synaptic relay of the ascending somatosensory pathway. The CN projects to several
areas of the central nervous system (CNS), including the cerebellum and the thalamic ventrolateral
posterior nucleus, which in turn projects to the primary somatosensory cortex. The main objective of
this study is to investigate the role of the CN in mediating optimal feed-forward encoding/decoding
of somatosensory information.
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Figure 1: Overview of the ascending pathway from primary tactile receptors of the fingertip to 2nd
order somatosensory neurons in the cuneate nucleus of the brainstem.

Recent microneurography studies in humans [9] suggest that the relative timing of impulses from
ensembles of mechanoreceptor afferents can convey information about contact parameters faster
than the fastest possible rate code, and fast enough to account for the use of tactile signals in natural
manipulation. Even under the most favorable conditions, discrimination based on firing rates takes
on average 15 to 20 ms longer than discrimination based on first spike latency [9, 10]. Estimates of
how early the sequence in which afferents are recruited conveys information needed for the discrim-
ination of contact parameters indicate that, among mechanoreceptors, the FA-I population provides
the fastest reliable discrimination of both surface curvature and force direction. Reliable discrimi-
nation can take place after as few as some five FA-I afferents are recruited, which can occur a few
milliseconds after the first impulse in the population response [10].

Encoding and decoding of sensory information based on the timing of neural discharges, rather
than (or in addition to) their rate, has received increasing attention in the past decade [7, 22]. In
particular, the high information content in the timing of the first spikes in ensembles of central
neurons has been emphasized in several sensory modalities, including the auditory [3, 16], visual
[4, 6], and somatosensory [17] systems. If relative spike timing is fundamental for rapid encoding
and transfer of tactile events in manipulation, then how do neurons read out information carried by
a temporal code? Various decoding schemes have been proposed to discriminate between different
spatiotemporal sequences of incoming spike patterns [8, 13, 1, 7].

Here, we investigate an encoding/decoding mechanism accounting for the relative spike timing of
signals propagating from primary tactile afferents to 2nd order neurons in the CN (Fig. 1). The
population coding properties of a model CN network are studied by employing as peripheral signals
the responses of real mechanoreceptors obtained via microneurography recordings in humans. We
focus on the first spike of each mechanoreceptor, according to the hypothesis that the variability in
the first-spike latency domain with respect to stimulus feature (e.g. the direction of the force) is
larger than the variability within repetitions of the same stimulus [9]. Thus, each tactile stimulus
consists of a single volley of spikes (black and gray waves in Fig. 1) forming a spatiotemporal
response pattern defined by the first-spike latencies across the afferent population (Fig. S1).

2 Methods

2.1 Human microneurography data

In order to investigate fast encoding/decoding mechanisms of haptic signals, we concentrate on the
responses of FA-I mechanoreceptors only [9]. The stimulus state space is defined according to a set
of four primary contact parameters:
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• the curvature of the probe (C = {0, 100, 200} m−1, |C| = 3),

• the magnitude of the applied force (F = {1, 2, 4}N , |F | = 3),

• the direction of the force (O = {Ulnar, Radial, Distal, Proximal, Normal}, |D| = 5),

• the angle of the force relative to the normal direction (A = {5, 10, 20}◦, |A| = 3).

In total, we consider the responses of 42 FA-I mechanoreceptors to 81 distinct stimuli. The prop-
agation velocity distribution across the set of primary projections onto 2nd order CN neurons is
considered by fitting experimental observations [11, 21] (see Fig. 1, upper-left inset). Each primary
afferent is assigned a conduction speed equal to the mean of the experimental distribution. An av-
erage peripheral nerve length of 1 m (from the fingertip to the CN) is then taken to compute the
corresponding conduction delay.

2.2 Cuneate nucleus model and synaptic plasticity rule

Single unit discharges at the CN level are modeled according to the spike-response model (SRM)
[5] (see Supporting Material Sec. A.1). The parameters determining the response of the CN sin-
gle neuron model are set according to in vivo electrophysiological recordings by H. Jörntell (un-
published data). Fig. 2A shows a sample firing pattern that illustrates the spike timing reliabil-
ity property [14] of the model CN neuron. We assume that the stochasticity governing the entire
mechanoreceptors-CN pathway can be represented by the probability function that determines the
electro-responsiveness properties of the SRM.

The CN network is modeled as a population of SRM units. The connectivity layout of the
mechanoreceptor-to-CN projections is based on neuroanatomical data [12], which suggests an av-
erage divergence/convergence ratio of 1700/300. This asymmetric coupling is in favor of a fast
feed-forward encoding/decoding process occurring at the CN network level. Based on this diver-
gence/convergence data, and given that there are around 2000 mechanoreceptors at each fingertip
(and that the CN is somatotopically organized at least to the precision of the finger), there must exist
around 12000 CN neurons coding for the tactile information coming from each fingertip. These
data suggest a probability of connection between a mechanoreceptor and a CN cell of 0.15. In order
to test the hypothesis of a purely feed-forward information transfer at the CN level, no collateral
projections between CN neurons are considered in the current version of the model.

We put forth the hypothesis that the efficacy of the mechanoreceptor-CN synapses is regulated ac-
cording to spike-timing-dependent plasticity (STDP, [1, 15]). In particular, we employ a STDP rule
specifically developed for the SRM [20]. This learning rule optimizes the information transmission
property of a single SRM neuron, accounts for coincidence detection across multiple afferents and
provides a biologically-plausible principle that generalizes the Bienenstock-Cooper-Munro (BCM)
rule [2] for spiking neurons. In order to focus on the first spike latencies of the mechanoreceptor
signals, we adapt the learning rule developed by Toyoizumi et al. 2005 [20] to very short transient
stimuli, and we apply it to maximize the information transfer at the level of the CN neural population.
See Supporting Material Sec. A.2 for details on the learning rule. The weights of mechanoreceptor-
CN synapses are initialized randomly between 0 and 1 according to a uniform distribution. The
training phase consists of 200 presentations of the sequence of 81 stimuli.

2.3 Metrical information transfer measure

An information-theoretical approach is employed to assess the efficiency of the haptic discrimina-
tion process. Classical literature solutions based on Shannon’s mutual information (MI) [19] consist
of using either a binning procedure (which reduces the response space and relaxes the temporal con-
straint) or a clustering method (e.g. k-nearest neighbors based on spike-train metrics) coupled to a
confusion matrix to estimate a lower bound on MI. Yet, none of these techniques allows the informa-
tion transmission to be assessed by taking into full account the metrics of the spike response space.
Furthermore, a decoding scheme accounting for precise temporal discrimination while maintaining
the combinatorial properties of the output space within suitable boundaries – even in the presence
of hundreds of CN spike trains – is needed.

A novel definition of entropy is set forth to provide a suitable measure for the encoding/decoding of
spiking signals, and to quantify the information transmission in the presence of large populations of
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Figure 2: (A) Example of discharge patterns of a model CN neuron evoked by a constant depolariz-
ing current (bottom). Responses are shown as a raster plot of spike times during 25 trials (center),
and as the corresponding PSTH (top). (B) Example of intra- and inter-stimulus distances DV P (red
and blue curves, respectively) over time for a VP cost parameter CV P = 0.15. The optimal dis-
crimination condition is met after about 110 ms, when the distribution of intra- and inter-stimulus
distances (right plot) stop overlapping. Fig. S2 in the Supporting Material shows an example of two
distance distributions that never become disjoint (i.e. perfect discrimination never occurs).

spike trains with a 1 ms temporal precision. The following definition of entropy is taken:

H∗(R) = −
∑
r∈R

1
|R|

log
∑
r′∈R

< r|r′ >
|R|

(1)

where R is the set of responses elicited by all the stimuli, |R| is the cardinal of R, and < r|r′ > is
a similarity measure between any two responses r and r′. The similarity measure < r|r′ > depends
on Victor-Purpura (VP) spike train metrics [23] (see below).

It is worth noting that, in contrast to the Shannon definition of entropy, in which the sum is over
different response clusters, here the sum is over all the |R| responses, no matter if they are identical
or different (i.e. cluster-less entropy definition). Also, the similarity measure < r|r′ > allows
the computation of the probability of getting a given response (i.e. p(r|s)) to be avoided, which
usually implies to group responses in clusters. These aspects make H∗(R) suitable to take into
account the metric properties of the responses. Notice that if the similarity measure were defined as
< r|r′ >= δ(r, r′) (with δ being the Dirac function), then H∗(R) would be exactly the same as the
Shannon entropy.

The conditional entropy is then taken as:

H∗(R|S) =
∑
s∈S

p(s)H∗(R|s) = −
∑
s∈S

p(s)
∑
r∈Rs

1
|Rs|

log
∑
r′∈Rs

< r|r′ >
|Rs|

(2)

where Rs is the set of responses elicited by the stimulus s.

Finally, the metrical information measure is given by:

I∗(R;S) = H∗(R)−H∗(R|S) (3)

The similarity measure < r|r′ > is defined as a function of the VP distance DV P (r, r′) between
two population responses r and r′. The distanceDV P (r, r′) depends on the VP cost parameter CV P
[23], which determines the time scale of the analysis by regulating the influence of spike timing vs.
spike count when calculating the distance between r and r′.

There is an infinite number of ways to obtain a scalar product from a distance. We take a very simple
one, defined as:

< r|r′ >= 1 ⇐⇒ DV P (r, r′) < Dcritic (4)
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where the critical distance Dcritic is a free parameter. According to Eq. 4, whenever DV P (r, r′) <
Dcritic the responses r, r′ are considered to be identical, otherwise they are classified as different. If
Dcritic = 0 one recovers the Shannon entropy from Eq. 1.

In order to determine the optimal value for Dcritic, we consider two sets of VP distances:

• the intra-stimulus distances DV P (r(s), r′(s)) between responses r, r′ elicited by the same
stimulus s;

• the inter-stimulus distances DV P (r(s), r′(s′′)) between responses r, r′ elicited by two dif-
ferent stimuli s, s′′.

Then, we compute the minimum and maximum intra-stimulus distances as well as the minimum
and maximum inter-stimulus distances. The optimal coding condition, corresponding to maximum
I∗(R;S) and zero H∗(R|S), occurs when the maximum intra-stimulus distance becomes smaller
than the minimum inter-stimulus distance.

In the case of spike train neurotransmission, the relationship between intra- and inter-stimulus dis-
tance distributions tends to evolve over time, as the input spike wave across multiple afferents flows
in. Fig. 2B shows an example of intra- and inter-stimulus distance distributions evolving over time.
The two distributions separate from each other after about 110 ms. The critical parameter Dcritic can
then be taken as the distance at which the maximum intra-stimulus distance becomes smaller than
the minimum inter-stimulus distance (dashed line in Fig. 2B). The time at which the critical distance
Dcritic can be determined (i.e. the time at which the two distributions stop overlapping) indicates
when the perfect discrimination condition is reached (i.e. maximum I∗(R;S) and zero H∗(R|S)).

To summarize, perfect discrimination calls upon the following rule:

• if all intra-stimulus distances are smaller than the critical distance Dcritic, then all the
responses elicited by any stimulus are considered identical. The conditional entropy
H∗(R|S) is therefore nil.

• if all inter-stimulus distances are greater thanDcritic, then two responses elicited by two dif-
ferent stimuli are always discriminated. The information I∗(R;S) is therefore maximum.

As aforementioned, the critical distanceDcritic is interdependent on the VP cost parameterCV P [23].
We define the optimum VP cost C∗V P as the one that leads to earliest perfect discrimination (in the
example of Fig. 2B, a cost CV P = 0.15 leads to perfect discrimination after 110 ms).

3 Results

3.1 Decoding of spiking haptic signals upstream from the cuneate nucleus

First, we validate the information theoretical analysis described above to decode a limited set of
microneurography data upstream from the CN network [18]. Only the 5 force directions (ulnar,
radial, distal, proximal, normal) are considered as variable primary features [9]. Each of the 5
stimuli is presented 100 times, and the VP distances DV P are computed across the population of 42
mechanoreceptor afferents. Fig. 3A shows that the critical distance Dcritic = 8 can be set 72 ms
after the stimulus onset. As shown in Fig. 3B, that ensures that the perfect discrimination condition
is met within 30 ms of the first mechanoreceptor discharge. Fig. 3C displays two samples of distance
matrices indicating how the input spike waves across the 42 mechanoreceptor afferents are clustered
by the decoding system over time. Before the occurrence of the perfect discrimination condition
(left matrix) different stimuli can have relatively small distances (e.g. P and N force directions),
which means that some interferences are affecting the decoding process. After 72 ms (right matrix),
all the initially overlapping contexts become pulled apart, which removes all interferences across
inputs and leads to a 100% accuracy in the discrimination process.

3.2 Optimal haptic context separation downstream from the cuneate nucleus

Second, the entire set of microneurography recordings (81 stimuli) is employed to analyze the infor-
mation transmission properties of a network of 50 CN neurons in the presence of synaptic plasticity
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Figure 3: Discrimination capacity upstream from the CN for a set of 5 stimuli (obtained by varying
the orientation parameter only) presented 100 times each. (A) Intra- and inter-stimulus distances
over time for a VP cost parameter CV P = 0.15. The perfect discrimination condition is met 72
ms after the stimulus onset and 30 ms after the arrival of the first spike. (B) Metrical information
and conditional entropy obtained with Dcritic = 8. (C) Distance matrices before and after the
occurrence of perfect discrimination.

(i.e. LTP/LTD based on the learning rule detailed in Sec. A.2). To compute I∗(R;S), the VP
distances DV P (r, r′) between any two CN population responses r, r′ are considered. Again, the
distance Dcritic is used to identify the perfect discrimination condition, and the VP cost parame-
ter C∗V P = 0.1 yielding the fastest perfect discrimination is selected. Fig. 4A shows that the CN
population achieves optimal context separation within 35 ms of the arrival of the first afferent spikes.

Selecting the optimal value of the critical distance, as done for Fig. 4A, corresponds to the situation
in which a readout system downstream from the CN would need a complete separation of haptic
percepts (e.g. for highly precise feature recognition). Relaxing this optimality constraint (e.g. to the
extent of very rapid, though less precise, reactions) can further speed up the discrimination process.
For instance, Fig. 4B indicates that setting Dcritic to a suboptimal value would lead to a partial
discrimination condition in which 80% of the maximum I∗(R;S) (with non-zero H∗(R|S)) can be
achieved within 15 ms of the arrival of the first pre-synaptic spike.

Figs. 4C-D illustrate the distributions of intra- and inter-stimulus distances 100 ms after stimulus
onset before and after learning. It is shown that while the distributions are well-separated after
learning, they are still largely overlapping before training (implying the impossibility of perfect
discrimination). It is also interesting to note that after (resp. before) learning the CN fired on
average n=217 (resp. 39) spikes, and that the maximum intra-stimulus distance was aboutDmax

V P =14
(resp. 45). The average uncertainty on the timing of a single spike can be expressed by ∆t =
Dmax
V P / CV Pn. Since CV P = 0.1, ∆t = 0.6 ms after learning and∼ 12 ms before. This shows that

the plasticity rule helped to reduce the jitter on CN spikes, thus reducing the metrical conditional
entropy compared to the pre-learning condition.

Fig. 4E suggests that the plasticity rule leads to stable weight distributions that are invariant with re-
spect to initial random conditions (uniform distribution between [0, 1]). After learning, the synaptic
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Figure 4: Information I∗(R;S) and conditional entropy H∗(R|S) over time. The CN population
consists of 50 cells. The 81 tactile stimuli are presented 100 times each. (A) Optimal discrimination
is reached 35 ms after the first afferent spike. (B) If the perfect discrimination constraint is relaxed
by reducing the critical distance, then the system can perform partial discrimination –i.e 80% of
maximum I∗(R;S) and non-zero H∗(R|S)– already within 15 ms of the first spike time. (C-D)
Distributions of intra- and inter-stimulus distances (computed 100 ms after stimulus onset) before
and after training, respectively. (E) Distribution of CN synaptic weights after learning. In this
example, a network of 10000 cuneate neurons has been trained.

efficacies of the mechanoreceptor-to-CN projections converge towards a bimodal distribution with
one peak close to zero and the other peak close to the maximum weight.

Finally, Sec. A.3 and Fig. S3 report some supplementary results obtained by using a classical STDP
rule [1, 15] –rather than the learning rule described in Secs. 2.2 and A.2– to train the CN network.

3.3 How does the size of the cuneate nucleus network influence discrimination?

An additional analysis was performed to study the relationship between the size of the CN popula-
tion and the optimality of the encoding/decoding process. This analysis reveals that a lower bound
on the number of CN neurons exists in order to perform optimal (i.e. both very rapid and reliable)
discrimination of the 81 microneurography spike trains. As shown in Fig. 5, the perfect discrimina-
tion condition cannot be met with a population of less than 50 CN neurons. This result corroborates
the hypothesis that a spatiotemporal population code is a necessary condition for performing effec-
tive context separation of complex spiking signals [3, 6]. By increasing the number of neurons, the
discrimination becomes faster and saturates at 72 ms (which corresponds to the time at which the
first spike from the slowest volley of pulses arrives at the CN). It is also shown that the number of
spikes emitted on average by CN cells under the optimal discrimination condition decreases from
2.1 to 1.3 with the size of the CN population, supporting the idea that one spike per neuron is enough
to convey a significant amount of information.
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4 Discussion

This study focuses on how a population of 2nd order somatosensory neurons in the cuneate nucleus
(CN) can encode incoming spike trains –obtained via microneurography recordings in humans– by
separating them in an abstract metrical space. The main contribution is the prediction concerning
a significant role of the CN in conveying optimal contextual accounts of peripheral tactile inputs to
downstream structures of the CNS.

It is shown that an encoding/decoding mechanism based on relative spike timing can account for
rapid and reliable transmission of tactile information at the level of the CN. In addition, it is empha-
sized that the variability of the CN conditioned responses to tactile stimuli constitutes a fundamental
measure when examining neurotransmission at this stage of the ascending somatosensory pathway.
More generally, the number of responses elicited by a stimulus is a critical issue when information
has to be transferred through multiple synaptic relays. If a single stimulus can possibly elicit mil-
lions of different responses on a neural layer, how can this plethora of data be effectively decoded
by downstream networks? Thus, neural information processing requires encoding mechanisms ca-
pable of producing as few responses as possible to a given stimulus while keeping these responses
different between stimuli.

A corollary contribution of this work consists in putting forth a novel definition of entropy, H∗(R),
to assess neurotransmission in the presence of large spike train spaces and with high temporal pre-
cision. An information theoretical analysis –based on this novel definition of entropy– is used to
measure the ability of CN network to perform haptic context discrimination. The optimality con-
dition corresponds to maximum information I∗(R;S) and (simultaneously) minimum conditional
entropy H∗(R|S) (which quantifies the variability of the CN conditioned responses).

Finally, the proposed information theoretical measure accounts for the metrical properties of the
response space explicitly and estimates the optimality of the encoding/decoding process based on
its context separation capability (which minimizes destructive interference over learning and max-
imizes memory capacity). The method does not call upon an a priori decoding analysis to build
predefined response clusters (e.g. as the confusion matrix method does to compute conditional
probabilities and then Shannon MI). Rather, the evaluation of the clustering process is embedded in
the entropy measure and, when the condition of optimal discrimination is reached, the existence of
well-defined clusters is ensured.
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