
         677

Active Sequential Learning with Tactile Feedback

Hannes P. Saal Jo-Anne Ting Sethu Vijayakumar

University of Edinburgh
Edinburgh, UK

hannes.saal@ed.ac.uk

University of British Columbia
Vancouver, BC, Canada

jting@acm.org

University of Edinburgh
Edinburgh, UK

sethu.vijayakumar@ed.ac.uk

Abstract

We consider the problem of tactile discrim-
ination, with the goal of estimating an un-
derlying state parameter in a sequential
setting. If the data is continuous and high-
dimensional, collecting enough representa-
tive data samples becomes difficult. We
present a framework that uses active learn-
ing to help with the sequential gathering of
data samples, using information-theoretic
criteria to find optimal actions at each time
step. We consider two approaches to recur-
sively update the state parameter belief: an
analytical Gaussian approximation and a
Monte Carlo sampling method. We show
how both active frameworks improve con-
vergence, demonstrating results on a real
robotic hand-arm system that estimates
the viscosity of liquids from tactile feed-
back data.

1 INTRODUCTION

Learning from tactile sensory data is challenging
due to the sparse, high-dimensional nature of touch.
Consider a representative example of searching for
keys in a large purse without looking inside. The
task is to locate the keys as fast as possible (i.e.,
perform efficient exploration of the purse), with each
exploratory finger movement giving tactile feedback
about the object being felt (or lack thereof). To
accomplish this task, one needs to i) be able to dis-
criminate between keys and other objects/materials
based on only tactile information; ii) know how to
efficiently explore the purse (probing corners where
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objects tend to be stored); and iii) have tactile sen-
sitivity to a wide range of stimuli. These three el-
ements correspond to estimating a state parameter
(that encodes relevant features of keys), performing
a sequence of efficient actions to reduce the search
time, and having an accurate and robust observa-
tion/sensory model (the mapping of actions to ob-
servations).

If we consider the problem of haptic tactile dis-
crimination, e.g., performing the task above with
a high degree-of-freedom (DOF) humanoid robot,
the space of possible actions is continuous and high-
dimensional, and collecting enough representative
data samples such that the state parameter is identi-
fiable becomes a difficult task. One could randomly
and uniformly sample the space of possible actions,
but this would be extremely time-consuming. If we
could collect data samples that are more “informa-
tive”, we would be able to estimate the state param-
eter in a reasonable amount of time.

In this paper, we use active learning to help with
the sequential gathering of data samples in order to
efficiently and accurately estimate the state param-
eter. We consider continuous actions, state param-
eters and observations. We assume that the obser-
vation model is learnt in an offline (training) phase
and the estimation of the state parameter is done
during run/test time. The state parameter can be
time-varying (in which case, a filter would be used
for recursive estimation), but we focus on the sce-
nario where the state parameter value is fixed. Our
proposed framework is straightforward to extend to
filters.

The belief of the state parameter can be updated se-
quentially using Bayes’ rule, but the resulting poste-
rior distribution is analytically intractable when the
observation model is nonlinear. We consider two ap-
proaches for approximating the posterior: i) an ana-
lytical Gaussian approximation (previously applied
by (Girard, Rasmussen, Candela, & Murray-Smith,
2003; Deisenroth, Huber, & Hanebeck, 2009) to fil-
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ters); and ii) Monte Carlo (MC) sampling (Doucet,
Freitas, & Gordon, 2001). The first approach is fast
but fails to capture multi-modal distributions, while
the second is computationally involved, though more
accurate.

We incorporate active learning to both belief updat-
ing methods, using information-theoretic criteria to
find optimal actions in a sequential setting. Our
proposed active framework relies on mutual infor-
mation (MI) to improve the speed of convergence
to the true state parameter value over its passive
equivalent. When active sequential updating with
Gaussian approximations is used, the MI measure
can be calculated analytically. However, when ac-
tive sequential updating MC sampling is used, cal-
culation of MI becomes intractable in high dimen-
sions and difficult to optimize. To address this,
we consider an alternative information-theoretic cri-
terion, quadratic information information (QMI),
e.g., Torkkola (2003), that allows simplifying some of
the computations. Both active sequential updating
methods use a Gaussian process prior to estimate
the nonlinear sensory/observation model.

We also evaluate the active sequential framework on
a robotic anthropomorphic arm with a three-finger
hand equipped with tactile sensor arrays, demon-
strating the first implementation of active sequential
learning on a real robotic system with continuous ac-
tions, state parameters and observations.

2 ACTIVE LEARNING

Different strategies may be used in order to de-
cide which sample is most informative. For exam-
ple, one could adopt an uncertainty sampling strat-
egy (Lewis & Gale, 1994), querying samples that
maximize an uncertainty measure (e.g., entropy or
MI). Another approach is the query-by-committee
algorithm (Seung, Opper, & Sompolinsky, 1992)
that queries in “controversial” parts of the space,
and various measures can be used to measure the
amount of disagreement between committee mem-
bers, e.g., entropy (Dagan & Engelson, 1995), aver-
age Kulback-Leibler (KL) divergence (McCallum &
Nigam, 1998), etc. Yet another class of query strate-
gies focuses on variance minimization and selects
the sample that minimizes the generalization error
by minimizing the variance of the model (Cohn,
Ghahramani, & Jordan, 1996). Other approaches
attempt to minimize the model’s generalization er-
ror directly, e.g., (Roy & McCallum, 2001; Zhu, Laf-
ferty, & Ghahramani, 2003), sometimes using uncer-
tainty sampling as a fail-safe backup strategy (Guo
& Greiner, 2007).

Information-theoretic criteria have been used in var-
ious fields for optimal experimental design (anal-
ogous to determining the optimal samples in ac-
tive learning), e.g., (Lindley, 1956; Mackay, 1992;
Denzler & Brown, 2002; Lewi, Butera, & Paninski,
2009). Paninski (2005) showed that an information-
maximization strategy is asymptotically more effi-
cient than non-adaptive, independent and identi-
cally distributed strategies such as random uniform
sampling.

2.1 MUTUAL INFORMATION

MI is a measure from probability and information
theory that captures the mutual dependence of two
variables y and θ. If θ and y are independent, their
MI will be zero. MI can also be viewed as the KL
divergence between the joint density (of θ and y)
and the product of the individual marginal densities.

Let us assume the following notation: θ ∈ R
dθ is

the state parameter that we want to estimate (e.g.,
position, inertia, viscosity of an object); x ∈ R

dx is
the action taken; and y ∈ R

dy is observed sensory
data given a particular {θ,x}. Figure 3 shows an ex-
ample scenario with a robotic anthropomorphic arm
that we use in our evaluations. We assume that ob-
servations y are a (nonlinear) function of the actions
x taken and state parameter θ, as the observation
model below describes:

y = f (x, θ) + ǫy (1)

where {x, θ,y} are all continuous, and ǫy is obser-
vation noise. Both x and y are potentially sparse
and high-dimensional.

For active learning, we are interested in determining
the optimal action x∗ to take during test time such
that the MI between y and θ, I (θ;y|x), is maxi-
mized, i.e., x∗ = arg maxx∈X I (θ;y|x), where:

I (θ;y|x) =

∫∫

p(θ,y|x) log
p(θ,y|x)

p(θ)p(y|x)
dydθ (2)

where p(θ,y|x) is the joint probability distribu-
tion of θ and y|x; and p(θ) and p(y|x) are the
marginal probability distributions of θ and y, re-
spectively. Eq. (2) is analytically tractable only if
p(θ) and p(y|x) are both Gaussian distributions and
if p(y|θ,x) depends linearly on θ. As a result, when
any nonlinear function f with high-dimensional ob-
servations y is adopted, MI is intractable, and its
optimization numerically unstable.

Previous methods have attempted to solve the in-
tegral in Eq. (2) in some of following ways: MC
sampling (as used by Denzler and Brown (2002)
for object recognition in active camera control) or
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numerical approximation techniques (e.g., Gaussian
quadrature rules, as done by Amari, Cichocki, and
Yang (1994) for Independent Component Analysis
estimation and by Fookes and Maeder (2004) for
medical image registration). These methods tend
to be computationally prohibitive even when the di-
mensionality of y becomes moderately high, limiting
the practical use of active learning with MI. In the
following sections, we take a first step towards tack-
ling this problem.

3 ACTIVE SEQUENTIAL

LEARNING

3.1 GAUSSIAN PROCESS

OBSERVATION MODEL

Let us assume an observed N -sample training data
set D = {τ i, χi, ti}N

i=1, where τ are the state param-
eters, χ are the actions taken, and t are the corre-
sponding sensory observations. We place a Gaussian
Process (GP) (Williams & Rasmussen, 1995) prior
over the observation model in Eq. (1):

ym (θ,x) ∼ GP (0,Km) (3)

where m = 1, ..., dy
1, dy is the dimensionality of

y, and the covariance function Km ∈ R
N×N is a

Gaussian kernel with matrix elements km(zp, zq):

km (zp, zq) = α2
m exp

{

1

2
(zp − zq)

T H−1
m (zp − zq)

}

+ σ2
mδzp

(zq) (4)

where z ∈ R
dθ+dx is the vector [θ x]T ;

Hm =
(

Hθ

m 0

0 Hx

m

)

; Hθ
m and Hx

m are diagonal ma-

trices; and δzp
is a Dirac delta function centered at

zp. Note that Hm is block diagonal since x and θ are
assumed to be independent, simplifying the model
considerably. The set of GP hyperparameters to be

optimized is γ =
{

α2
m, σ2

m,Hθ
m,Hx

m

}dy

m=1
.

3.2 BELIEF UPDATING

Assuming that the observation model in Eq. (1) is
learnt accurately in an offline training phase, we are
faced with the task of estimating the particular value
of θ∗ at run/test time. As data samples are sequen-
tially observed/collected, the estimate of θ∗ is recur-
sively updated. Once an action xt has been taken
and the corresponding yt observed at time step t,

1By assuming independent y dimensions, p(y|θ,x)

factorizes as p(y|θ,x) =
Qdy

m=1
p(ym|θ,x).

the posterior distribution over θ can then be up-
dated using Bayes’ rule:

pt(θ|yt,xt) =
p(yt|θ,x)pt−1(θ)

p(yt|xt)
(5)

where pt−1(θ) is the distribution over θ from the pre-
vious time step), p(yt,xt|θ) ≡ p(yt|θ,xt) is the like-
lihood of the current observation conditioned on the
action that was taken, and p(yt|xt) is the marginal
of y.

This update is analytically intractable when f is
non-linear. Fast approximations can be used, but
they might fail if f is highly nonlinear On the other
hand, it can be be numerically approximated with
sequential MC sampling techniques, though at a
computational cost. In the following we present ac-
tive extensions for both fast approximate Gaussian
updating and MC sampling updating.

3.2.1 Analytical Gaussian Updating

Past work has proposed the use of a GP to model y

in the context of a filter, e.g., (Girard et al., 2003;
Deisenroth et al., 2009), arriving at a Gaussian ap-
proximation of the marginal p(y|x). The expressions
for the marginal mean of y, the marginal variance of
y, and cross-covariance between θ and y (denoted by
m(x) ∈ R

dy , S(x) ∈ R
dy×dy , and C(x) ∈ R

dy×dθ ,
respectively) can all be evaluated analytically. We
use the following recursive update equations for the
mean and variance of θ at time step t, which appear
in similar for in the extended Kalman filter or the
unscented filter:

µt = µt−1 + CT
t S−1

t (yobs
t − mt−1)

Σt = Σt−1 − CT
t S−1

t Ct

where µt is the mean of the Gaussian over θ at time
step t and Σ is the covariance. m, S, and C can
be evaluated analytically as follows (Girard et al.,
2003; Deisenroth et al., 2009):

mm = qm(x)T K−1
m tm

Smn = tT
m(K−1

m )T Qmn(x)K−1
n tn − mmmn

+ δ(m − n)
(

α2
m − tr(K−1

m Qmm)
)

Cmn = ZT
m(x)K−1

m tm − µnmm

Here, mm is the m-th coefficient of m; Smn is the
(m, n)-th entry of the matrix S; Cmn is the (m, n)-
th entry of the matrix C; and tm ∈ R

N is the m-th
dimension of observed tactile data for all training
samples. The derived expressions for qm, Qmm, and
Zm are given in the supplementary material.

We introduce an active component to the selection of
action xt at time step t, by noting that the MI can be
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calculated analytically when p(θ) is Gaussian. We
find the optimal action x∗

t = argmaxx I(θ;y|x) =
argmaxx |C(x)S(x)C(x)T | by performing gradient
ascent on I(θ;y|x), with the gradient defined as
∇x|C(x)S(x)C(x)T |. Expressions for the gradient
of C and S are given in the supplementary material.

3.2.2 MC Sampling-based Updating

The second approach is to approximate pt(θ) with
a set of particles, which comes with higher compu-
tational complexity, but allows to accurate updates
even when f is highly nonlinear.

We can also numerically approximate Eq. (5) by se-
quential MC sampling methods—using P samples,
with each sample p having a value θp and a corre-

sponding weight wp (0 ≤ wp ≤ 1 and
∑P

p=1
wp = 1).

We evaluate Eq. (2) in order to find the optimal
action x∗

t to take at time step t. Unfortunately,
when the nonlinear observation model of Eq. (1) is
adopted, the MI is intractable for high dimensional
y, and its optimization is numerically unstable. As
an alternative to MI, we consider QMI, IQ (θ;y|x):

IQ (θ;y|x) =

∫∫

(p(θ,y|x) − p(θ)p(y|x))2 dydθ

=

∫∫

[

(p(θ)p(y|θ,x))
2
+ p(θ)2p(y|x)2

−2p(y|θ,x)p(θ)2p(y|x)
]

dydθ

:= V1 + V2 − 2V3 (6)

where the terms p(θ,y|x), p(θ) and p(y|x) are as
defined for Eq. (2). QMI is not a strict measure of
information (since it violates the principle of additiv-
ity), but it is always positive. Torkkola (2003) shows
that if we are interested in finding the distribution
that maximizing the KL divergence (equivalent to
maximizing mutual information), then maximizing a
quadratic divergence measure is equivalent to maxi-

mizing a lower bound to the KL divergence.

The advantage of QMI is that the integral over y

in Eq. (6) can be solved analytically2 if Gaussian
densities are assumed for p(y|θ,x). We can evaluate
Eq. (6) to get:

V1 =

P
∑

p=1

w2
p(4π)−

dy

2 |Φ(θp,x)|−
1

2

V2 =

[

P
∑

p=1

w2
p

]

P
∑

a=1

P
∑

b=1

wawbG(νab,Φab)

2Given a particular action x and a Gaussian p(y|θ,x),
the marginal p(y|x) is a mixture of Gaussians. Each
product of Gaussians gives an unnormalized Gaussian,
which can then be integrated over y.

V3 =

P
∑

a=1

P
∑

b=1

w2
awbG(νab,Φab)

where:

νab = ν(θa,x) − ν(θb,x)

Φab = Φ(θa,x) + Φ(θb,x)

G(r,R) = (2π)−0.5dy |R|−0.5 exp(−0.5rTR−1r)

and ν(θa,x) and Φ(θa,x) are the GP predictive
mean and variance at particle θa and action x.
At each time step t, we find the optimal action
x∗

t = argmaxxIQ(θ,y|x) by performing gradient as-
cent on the QMI, with the gradient defined as:

∇xV1 =
P

∑

p=1

w2
p(4π)−

dy

2 |Φp|
−

1

2

[

−
1

2

(

Φ−1
p

∂Φp

∂x

)]

∇xV2 =

[

P
∑

p=1

w2
p

]

P
∑

a=1

P
∑

b=1

wawb

∂G(νab,Φab)

∂x

∇xV3 =

P
∑

p=1

P
∑

a=1

w2
pwa

∂G(νpa,Φpa)

∂x

where the derivatives of G(νab,Φab) and Φp are
straightforward to derive.

3.3 COMPLEXITY

During run time, the analytical Gaussian update is
O(d3

y) + O((dθ + dx)d2
yN2) at each time step. The

additional computational burden due to the infor-
mation maximization in the active case is linear in
the number of steps the gradient ascent takes.

For MC sampling-based belief updating, the com-
putational complexity of the active update at each
time step during test time will be O(dyP 2N). As
the complexity is linear in P in the passive case,
this represents significantly higher computational re-
quirements. However, by using QMI we avoid having
to evaluate integrals over y using sampling, as done
in other approaches (Denzler & Brown, 2002).

It is worth noting, that during optimization each
successive step along the gradient improves the in-
formativeness of the selected action. Therefore the
optimization does not have to be run until conver-
gence for time-critical applications, while still pro-
viding benefits compared to the passive case.

4 EXPERIMENTAL RESULTS

4.1 SYNTHETIC DATA

We applied the active Gaussian and MC sampling-
based belief updates in Sections 3.2.1 and 3.2.2 to
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Table 1: Converged average predictive squared error values after 200 time steps for active and non-active
belief updating approaches, averaged over 10 trials, for different observation models (functions i–iii).

Function i Function ii Function iii
Observation noise low high low high low high

Gaussian belief updates with random x 0.0001 0.0017 5.0304 15.94 - -
Active Gaussian belief updates 0.0001 0.0005 0.0018 10.27 - -
MC sampling-based belief updates with random x 0.0004 0.0018 0.0013 0.0062 0.0035 0.0833
Active MC sampling-based belief updates 0.0002 0.0019 0.0006 0.0011 0.0032 0.0594
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Figure 1: a) Average predictive squared error (SE) using posterior mean of θ over all time steps, averaged
over 10 trials, for function ii (with high observation noise); b) Estimated posterior pt(θ) over all time steps
t for a sample trial with (active and passive) MC sampling-based belief updates for function ii (with high
observation noise).

synthetic data sets, for the purpose of estimating
a particular value of θ∗ at runtime. We compared
them with their passive equivalents.

Table 1 lists the four different frameworks evalu-
ated: a) Gaussian belief updates with random ac-
tions, b) active Gaussian belief updates, c) MC
sampling-based belief updates with random ac-
tions, and d) active MC sampling-based belief up-
dates. We considered the following three observa-
tion models/functions: i) y = exp(−(θ − x)2); ii)
y = cos(θ) sin(θx); iii) y = exp(−(θ1 − x1)

2) +
exp(−0.5(θ2−x2)

2). Functions i and ii both assume
scalar θ and x, while in function iii, both θ and
x are 2-dimensional. We generated data sets, each
having 1000 samples, from functions i-iii with either
a small amount or a larger amount of observation
noise3. The “high” and “low” headers in Table 1 in-

3We parameterize noise with the coefficient of deter-
mination, r2 = (σ2

y−σ2

res)/σ2

y , where σ2

res is the variance
of the residual error. We added noise scaled to the vari-
ance of the noiseless ȳ such that σ2

noise = cσ2

ȳ, where

c = 1/r2 − 1. We set r2 = 0.995 and r2 = 0.95 for the
low and higher noise cases, respectively.

dicate scenarios with high and low observation noise,
respectively, for functions i-iii. We optimized the lo-
cation of M = 500 pseudo-inputs during training
to learn the observation model over y. The MC
sampling-based belief updates used a population of
P = 500 samples, with the active version using a
downsampled population of 250 samples during op-
timization of x∗

t to increase the speed of simulations.

Table 1 shows that the converged average predictive
squared error (MSE) (using the posterior mean of θ)
after 200 time steps for the four frameworks, evalu-
ated on functions i-iii. Results are averaged over 10
trials for each framework-observation model combi-
nation. Function i appears to be a relatively easy
data set (with all methods attaining low predictive
errors), while functions ii and iii appear to be a little
more interesting. Function ii is highly nonlinear—
with multiple peaks—in θ. In this scenario, ana-
lytical Gaussian belief updating fails to capture the
multimodal distribution of pt(θ), with the occasional
failure (i.e., convergence to an incorrect θ∗) inflating
the MSE values4. For this reason, we omit the pre-

4Even though reported results are averaged over 10
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Figure 2: Average standard deviations of posterior
pt(θ) over all time steps t, averaged over 10 trials.
Figures 2(a) and 2(b) are for functions i and ii, re-
spectively (both with high observation noise).

dictive error values for Gaussian belief updating on
function iii since they are high for similar reasons.

Figure 1(a) shows the predictive squared error in θ

for a particular trial with MC sampling-based be-
lief updates and function ii as an observation model.
Figure 1(b) shows the corresponding estimated pos-
terior pt(θ) over all time steps t. Plots for analytical
Gaussian belief updating with function ii were omit-
ted due to high predictive errors. Similar trends in
the speed of convergence can be observed for active
and passive MC sampling belief updates on functions
i and ii. These were omitted due to lack of space.

Figure 2 shows the standard deviation of the pos-
terior pt(θ), averaged over all 10 trials, for both
Gaussian and MC sampling-based belief updates.
Figure 2(a) shows the average posterior standard
deviations for analytical Gaussian belief updates
on function i (for both active and passive cases).

trials, the range of average predictive error values hold
for Gaussian belief updates when averaged over 100 tri-
als.

MC sampling-based belief updates produce similar
curves that were omitted from the plot for clarity.
Figure 2(b) shows the average posterior standard de-
viations for function ii, with results from the Gaus-
sian belief updates omitted since they failed. These
figures demonstrate that adding an active compo-
nent to sequential data selection/collection appears
to speed up convergence to θ∗.

4.2 ESTIMATION OF VISCOSITY

FROM TACTILE FEEDBACK

Figure 3: Schunk SDH 7-DOF hand on a DLR 7-
DOF arm. y is observed tactile data from sensors
on fingers, x describes the arm’s actions (e.g., joint
angles, shaking frequency), and θ is the viscosity of
the bottle’s liquid.

We explored the problem of viscosity estimation
from tactile data using a robotic anthropomorphic
system as shown in Figure 3. This consists of a
7 degree-of-freedom robot arm with a 7 degree-of-
freedom three-fingered hand attached. The fingers
are equipped with 6 tactile arrays containing 486
texels in total

The robot’s task was to determine the viscosity of
liquids θ in bottles by shaking the containers at dif-
ferent frequencies x. Observations y come from tac-
tile arrays mounted on the robot’s fingers. The shak-
ing frequency is either selected at random (passive
case) or maximized to be most informative with re-
spect to the current belief of θ (active case).

For gathering the training data, we took bottles con-
taining three different liquids and recorded the tac-
tile responses while shaking the bottles at a range of
frequencies (from 0.3 to 1.1 Hz) for 5 seconds each.
The three liquids had viscosities of 1 cst (water), 130
cst (motor oil), and 1300 cst (glycerine). These val-
ues were transformed to log10 space, yielding values
of 0, 2.07 and 3.07, respectively. The bottles used
for the three liquids were identical, and the content
was matched for weight. A standard initial grip was
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used for all bottles.

To deal with the high-dimensional y, we prepro-
cessed the tactile data, applying PCA and retaining
the principal component (containing time-varying
data). We calculated the Fourier transform of the
data, and fitted individual GPs to each Fourier com-
ponent (23 in total). The resulting model maps
the joint space of viscosity and shaking frequency
[θ x]T ∈ R

2 to the preprocessed tactile space (23D).
We collected 270 training points in total.

At the start of run/test time, we placed an initial
broad Gaussian prior over the viscosity θ and ran
the experiment for 10 time steps. In the first step,
a shaking frequency of 0.5 Hz was always chosen,
as the sensor values had to be normalized to ac-
count for slight variations in grip force and grip loca-
tion. In subsequent steps, shaking frequencies were
either selected randomly (passive case), or by gradi-
ent ascent on the mutual information (active case).
For Gaussian-based updates, optimization for a time
step took less than 0.5 seconds, with a negligible im-
pact on the total run time (see Figure 4(a) for results
from a sample trial). In contrast, for MC sampling-
based updates, optimization for a time step took be-
tween 15 and 24 seconds for a set of 500 particles.
While computations could be speeded up by paral-
lelization, the MC sampling-based solution remains
infeasible for problems requiring near real-time de-
cisions.

We considered 4 liquids, 3 of which were used in
training, with the fourth having a viscosity of 30
cst (1.47 in log space). The fourth liquid was not
part of the training set. For each liquid, we per-
formed 3 trials of Gaussian-based updates and 2 tri-
als of sampling-based updates—for both the active
and passive cases.

For Gaussian-based updates, the predictive mean
squared error—averaged over all four liquids and
trials—for the passive case after 10 time steps was
0.37, compared to 0.07 for the active case. Estima-
tion worked equally well for the liquids used in train-
ing as well for the newly introduced liquid. Errors
for the MC sampling-based approach were generally
higher, with 0.42 and 0.34 for the passive and active
cases, respectively. The posterior standard devia-
tion after 10 steps for Gaussian updates was 0.26
for the passive case, compared to 0.15 for the active
case. Figure 4(b) confirms this result, showing a
faster convergence in the active case. MC sampling-
based updates show a similar trend, with posterior
standard deviations taking a value of 0.31 for the
passive and 0.24 for the active case.

The slightly worse performance of sampling-based

updates seemed to be mainly due to outlier parti-
cles affecting the overall statistics, as well as the low
number of particles used. We found the posterior
densities to be mostly unimodal, explaining the good
performance for the fast Gaussian approach on this
task.
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Figure 4: a) Single trial results for pt(θ) for all t; b)
Average standard deviations of posterior viscocity
over all time steps t.

5 DISCUSSION

We described an active sequential framework for
continuous actions, state parameters and observa-
tions, exploring two variants that used either Gaus-
sian or MC sampling updates. We use mutual infor-
mation to improve the speed of convergence and rely
on quadratic mutual information to simplify the op-
timization of actions in MC sampling updates. We
evaluated the proposed active framework on a real
robotic system, with the task of determining viscos-
ity of different liquids from tactile feedback under
different shaking frequencies. We demonstrated not
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only successful estimation of liquid viscosities, but
also a faster convergence towards the viscosity esti-
mate (over the passive setting). Thus, with limited
added computational burden, a significant speed-up
in convergence was achieved. The extension of the
active framework to filters (i.e., where the state pa-
rameter is time-varying) is straightforward and in-
volves learning a model of the system dynamics.

Deciding between Gaussian and MC sampling up-
dates involves a speed-accuracy trade-off. While the
former is fast, it fails to capture multi-modal distri-
butions (as seen by failures on synthetic data sets in
Section 4.1). On the other hand, MC sampling up-
dates are computationally restrictive but more pow-
erful. Even though sequential MC sampling may be
computationally involved, there do exist scenarios
where data collection may be costly (e.g., collecting
data with the Mars Rover), such that it is acceptable
to wait for an informative data sample. Future work
will explore extensions to observations with corre-
lated dimensions and to higher dimensional data.
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