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2 A. Arleo et al.

A nerve cell receives multiple inputs from upstream neurons by way of its
synapses. Neuron processing functions are thus influenced by changes in
the biophysical properties of the synapse, such as long-term potentiation
(LTP) or depression (LTD). This observation has opened new perspec-
tives on the biophysical basis of learning and memory, but its quan-
titative impact on the information transmission of a neuron remains
partially elucidated. One major obstacle is the high dimensionality of
the neuronal input-output space, which makes it unfeasible to perform a
thorough computational analysis of a neuron with multiple synaptic in-
puts. In this work, information theory was employed to characterize the
information transmission of a cerebellar granule cell over a region of its
excitatory input space following synaptic changes. Granule cells have a
small dendritic tree (on average, they receive only four mossy fiber affer-
ents), which greatly bounds the input combinatorial space, reducing the
complexity of information-theoretic calculations. Numerical simulations
and LTP experiments quantified how changes in neurotransmitter release
probability (p)-modulated information transmission of a cerebellar gran-
ule cell. Numerical simulations showed that p shaped the neurotransmis-
sion landscape in unexpected ways. As p increased, the optimality of the
information transmission of most stimuli did not increase strictly mono-
tonically; instead it reached a plateau at intermediate p levels. Further-
more, our results showed that the spatiotemporal characteristics of the
inputs determine the effect of p on neurotransmission, thus permitting
the selection of distinctive preferred stimuli for different p values. These
selective mechanisms may have important consequences on the encod-
ing of cerebellar mossy fiber inputs and the plasticity and computa-
tion at the next circuit stage, including the parallel fiber–Purkinje cell
synapses.

1 Introduction

Theoretically, neurons can be considered as transmitting devices encoding
information in terms of digital spike trains. Spikes are transmitted between
neurons at the synapses, where they are converted into analog signals by
elaborate nonlinear transformations based on the time-dependent proper-
ties of neurotransmitter release and diffusion, postsynaptic receptor activa-
tion, and intrinsic electroresponsiveness. Synapses undergo plasticity via
activity-dependent modifications, such as long-term potentiation (LTP) and
depression (LTD) (Bliss & Collingridge, 1993; Bliss & Lomo, 1973; Malenka
& Bear, 2004). These modifications affect the synaptic dynamics (e.g., by
regulating the number of neurotransmitter quanta released or the phos-
phorylation of postsynaptic receptors), and ultimately they alter the com-
putational and transmitting properties of the whole postsynaptic neuron
(Abbott & Regehr, 2004; Tsodyks & Markram, 1997).



NECO_a_00006-Arleo neco.cls April 26, 2010 22:18

U
nc

or
re

ct
ed

Pr
oo

f

How Synaptic Release Probability Shapes Neuronal Transmission 3

Neuronal computation can be analyzed in terms of information content
by quantifying how much information the neural responses convey about
the input stimuli (Bialek, Rieke, de Ruyter van Steveninck, & Warland, 1991;
Borst & Theunissen, 1999; Fuhrmann, Segev, Markram, & Tsodyks, 2002;
Quian Quiroga & Panzeri, 2009). In this framework, neurons are treated
as stochastic communication channels, and information theory (Cover &
Thomas, 1991; Shannon, 1948) provides the mathematical tools to mea-
sure their transmitting properties. Information theory has been used to
analyze neuronal computation and quantify the information transmitted
by a neuron following sensory stimulation (e.g., in the cat visual cortex:
Sharpee et al., 2006; in the fly visual system: Brenner, Bialek, & de Ruyter
van Steveninck, 2000; Brenner, Strong, Koberle, Bialek, & de Ruyter van
Steveninck, 2000; de Ruyter van Steveninck, Lewen, Strong, Koberle, &
Bialek, 1997; in the mammalian auditory system: Lu & Wang, 2004; Smith
& Lewicki, 2006; in the cricket cercal sensory system: Dimitrov, Miller,
Gedeon, Aldworth, & Parker, 2003; Roddey & Jacobs, 1996; Theunissen,
Roddey, Stufflebeam, Clague, & Miller, 1996; Theunissen & Miller, 1991; in
the rat somatosensory system: Wan et al., 2004). It has also been used to
characterize the relevant regions of a neuron tuning curve in relation to the
variability in its sensory encoding properties (Butts & Goldman, 2006) or
to characterize the adaptation in receptive fields to visual stimuli (Sharpee
et al., 2006). Information theory has been found useful to measure the effi-
ciency of information transmission at a single synapse (de la Rocha, Nevado,
& Parga, 2002; Fuhrmann et al., 2002; Goldman, 2004; London, Schreib-
man, Hausser, Larkum, & Segev, 2002; Manwani, Steinmetz, & Koch, 2002;
Tiesinga, 2001), as well as to characterize the information transmission in
simplified integrate-and-fire neurons (Manwani et al., 2002; Zador, 1998),
or in more complex models, but under specific constraints, for example,
in the absence of interaction among presynaptic inputs (Manwani & Koch,
2001) or between inhibitory inputs and phase lags (Tiesinga, Fellous, Jose,
& Sejnowski, 2002). In the current work, an information-theoretic approach
was used to characterize the processing of a neuron over a region of its
excitatory input space and investigate how neuronal processing changes
following synaptic plasticity.

The mean information transmitted between the neuron responses r and
its inputs s can be quantified by using Shannon’s mutual information (MI)
(Cover & Thomas, 1991; Rolls & Deco, 2002; Shannon, 1948):

MI (R, S) =
∑

s∈S

∑

r∈R

p(s)p(r | s) log2
p(rs)
p(r )

, (1.1)

where S and R are the input and output spaces, respectively; p(s) and
p(r ) are the a priori probability distributions; and p(r | s) is the conditional
probability distribution.
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Figure 1: Cerebellar granule cell morphology and spike signal digitalization.
Confocal image of a biocytin-stained granule cell (GC) in the rat cerebellum (slice
preparation). Granule cells are characterized by a compact electrotonic structure
(D’Angelo et al., 1995; Saviane & Silver, 2006) and have an exceptionally low
number of synapses (four on average) (Eccles et al., 1967; Jakab & Hamori,
1988) receiving spike trains from the mossy fibers (MFs) (Chadderton et al.,
2004). GCs are numerous (∼1011 in humans) and constitute more than half of
the neurons in the brain. White trace: The membrane potential of a GC recorded
over 120 ms. Spike trains were digitized as strings of 0s and 1s, within discrete
time windows of 6 ms (time bins).

The MI measure can be used to estimate how much the neuron response
reflects the input stimuli versus the intrinsic variability of the neuron (e.g.,
if the response is independent from the inputs, MI will be zero). Thus,
MI essentially measures the difference between the signal and noise en-
tropy (Borst & Theunissen, 1999) and provides a sound statistical tool to
dissect the relative contributions of different factors to neural information
transmission (e.g., spike count versus spike timing) under different condi-
tions (e.g., before and after LTP induction). One major factor that makes it
difficult to estimate the MI see equation 1.1, and assess how synaptic plas-
ticity affects neuronal processing is the high dimensionality of the input-
output space (Borst & Theunissen, 1999). Indeed, assessing MI requires
determining the probability distribution of the output spike trains given
any input spike train. In general, this is impracticable even for a single neu-
ron due to the multiple mechanisms of nonlinear integration at individual
synapses; the large number of synapses, typically 103 to 104; and their loca-
tion on wide dendritic trees with complex electrotonic and active properties
(Borst & Theunissen, 1999; Koch & Segev, 2000).

To overcome these issues, the cerebellar granule cell, GC (see Figure 1),
was considered. GCs are tiny neurons (6 µm diameter) (Eccles, Ito, &
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How Synaptic Release Probability Shapes Neuronal Transmission 5

Szentagothai, 1967; Jakab & Hamori, 1988) located at the major input stage
of the cerebellum, the granular layer. GCs play a major role in the early
stages of cerebellar computation, and their synapses have been proposed
to regulate the input-output relationship through gain modulation (Albus,
1971; Mitchell & Silver, 2003; Rothman, Cathala, Steuber, & Silver, 2009) and
long-term adaptation (Hansel, Linden, & D’Angelo, 2001; Philipona &
Coenen, 2004; Schweighofer, Doya, & Lay, 2001).

GCs have several remarkable properties. First, they have a compact elec-
trotonic structure (D’Angelo, De Filippi, Rossi, & Taglietti, 1995; Saviane &
Silver, 2006; Silver, Traynelis, & Cull-Candy, 1992), which maintains their
whole cell membrane equipotential, eliminating spatial effects on compu-
tation (Koch & Segev, 2000). Second, they have a low number of mossy fiber
(MF) afferents (4.17 on average) (Eccles et al., 1967; Jakab & Hamori, 1988),
which generates a tractable number of presynaptic input combinations and
greatly reduces the complexity of information-theoretic calculations. Third,
they have a stereotyped synaptic and excitable behavior, which simplifies
the implementation of models (D’Angelo et al., 1995). Fourth, MFs have
been shown to respond with high-frequency bursts to punctuate stimu-
lation (Arenz, Silver, Schaefer, & Margrie, 2008; Chadderton, Margrie, &
Hausser, 2004; Jorntell & Ekerot, 2006; Rancz et al., 2007), which have been
carefully characterized. Fifth, both GC output bursts and plasticity at MF-
GC synapses are controlled by input patterns and Golgi cell inhibition
(Mapelli & D’Angelo, 2007). The dynamics of repetitive stimulation have
been clarified to a considerable extent (Nieus et al., 2006; Saviane & Sil-
ver, 2006; Sola, Prestori, Rossi, Taglietti, & D’Angelo, 2004). Finally, MF-GC
synaptic transmission is based on nonlinear transformations determined
by presynaptic short-term facilitation and depression, glutamate spillover,
postsynaptic AMPA and NMDA receptor gating, and multiple voltage-
dependent channel interactions regulating intrinsic electroresponsiveness
(D’Angelo et al., 1995; Nielsen, DiGregorio, & Silver, 2004; Nieus, DiGre-
gorio, & Silver, 2006; Sargent, Saviane, Nielsen, DiGregorio, & Silver, 2005;
Sola et al., 2004). The mechanisms of synaptic transmission and plasticity at
the MF-GC synapses have been intensely investigated, revealing that LTP
is largely determined by a raise in the presynaptic neurotransmitter release
probability (p) (D’Angelo et al., 2001; Nieus et al., 2006; Saviane & Silver,
2006; Sola et al., 2004).

The study presented here focused on the effects of release probability
(p) changes at MF-GC synapses on the overall GC information transmis-
sion properties. The same information-theoretic quantification was applied
to analyze data from numerical simulations of biophysical synaptic and
GC models, as well as data issued from in vitro intracellular GC record-
ings. At a first level, the mutual information MI between MF inputs and
GC responses was measured as a function of release probability, p. Expect-
edly, MI increased significantly with p, as MI is a measure of the information
transmission averaged over the entire input set considered for examination.
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6 A. Arleo et al.

A second level of analysis assessed the contribution of specific stimuli to
information transmission. For this purpose, the stimulus-specific surprise
measure (Butts & Goldman, 2006; DeWeese & Meister, 1999; Theunissen &
Miller, 1991) was used to quantify the optimality of single stimulus trans-
mission (see section 4). This analysis investigated which stimulus patterns
were “preferred” by the neuron under different release probability condi-
tions, and it demonstrated that maximum synaptic release probability did
not constitute a necessary condition in order to achieve optimal transmis-
sion. Rather, for a significant set of stimuli, the surprise values saturated
at intermediate p values (consistent with those found in brain recordings
at MF-GC synapses: Sola et al., 2004; at CA3-CA1 hippocampal synapses:
Dobrunz & Stevens, 1997; and at neocortical pyramid-to-pyramid connec-
tions: Koester & Johnston, 2005) with optimal information transmission
occurring over a large range of release probabilities (from about 0.4 to the
maximum value tested, i.e., 0.8). Finally, a third level of analysis concen-
trated on the spatiotemporal characteristics of the stimuli and quantified,
for different p values, the spike timing contribution to information trans-
mission by means of the surprise-per-spike measure (see section 4). The
surprise per spike was typically higher for either long-correlated stimuli at
low p or short-correlated stimuli at high p.

The work presented in this letter provides a set of tools to investigate
neuronal coding and information transfer in the cerebellar granular layer
network, which enables a quantitative exploration of the relative impor-
tance of the coding strategies for different input patterns and synaptic
parameters.

2 Results

A first fundamental question is how the transmitting properties of a GC
vary under different release probability conditions (e.g., LTP). To this aim,
the average amount of information transmitted by the cell (i.e., the MI) was
measured (see section 2.1) computationally with a GC model and experi-
mentally. Experimental results were obtained with a limited set of stimuli;
the numerical simulations were used for corroborating the experimental
findings and extending them to a larger region of the input space. The ques-
tion of how changes in release probability shape the neurotransmission of
specific MF inputs is addressed in section 2.2 using the stimulus-specific
surprise. Finally, section 2.3 investigates how correlations across input spike
trains affect single-stimulus transmission and assesses the informative con-
tribution of single pulses in the presence of distinct spatiotemporal stimulus
structures and multiple presynaptic release probabilities.

2.1 Impact of Neurotransmitter Release Probability Changes on
Information Transmission. The average information transmitted by a sin-
gle GC was quantified before and after induction of long-term synaptic
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How Synaptic Release Probability Shapes Neuronal Transmission 7

plasticity at MF-GC synapses, a condition shown to modify release prob-
ability (p) at the MF synaptic terminals (Sola et al., 2004). MI analysis was
performed using experimental data obtained by whole-cell patch record-
ings of GCs during in vitro electrophysiological recordings (see section 4).
To measure MI, one to four MFs were stimulated by a set of spike trains,
according to a protocol inspired by the bursting discharge of GCs follow-
ing punctuate tactile stimulation in vivo (Chadderton et al., 2004). Because
our experimental techniques did not allow us to stimulate the four MFs
independently, this analysis could be done only over a limited input set
(16 distinct stimuli, each made of identical spike trains on the four MF in-
puts). The GCs responded with noisy spike trains that had higher average
frequency and occurred earlier after LTP (see Figure 2A). The neurotrans-
mitter release probability p was estimated before and after LTP induction
(see Supplementary Material).1 Because p was the average value over the
different synapses, it will henceforth be indicated with p̄. LTP caused an
average MI increase of 32 ± 4% for p̄ changing by 48 ± 5% (n = 9; paired
student’s t-test, p < 0.05). The average amount of information carried by
the firing frequency was 51%, meaning that half of the information transfer
was due to interspike temporal relationships.

The same stimulation protocol was employed to run the numerical sim-
ulations with the detailed GC model, and MI was measured for different p
values at the model MF-GC synapses. As shown in Figure 2B, MI increased
as a function of p̄ for both experimental and simulated data. The numer-
ical results predicted an increase in MI from 0.2 to 3.5 bits for p̄ varying
within the range [0.1, 1]. Due to the restricted input space explored (16 stim-
uli), MI tended to saturate when the number of simultaneously active MFs
was greater than 2 and p̄ >= 0.5 (see below). The vectors representing the
experimental MI changes during LTP fell within the limits of the model pre-
dictions for all the GCs examined. The similarity between experimental and
simulation results indicated that the model could predict the information
transfer dynamics following long-term synaptic plasticity. It also supported
the hypothesis that the major noise source of GCs is stochastic neurotrans-
mitter release, as anticipated by quantal analysis (Sola et al., 2004). A control
analysis focusing on the role of presynaptic depression and postsynaptic
receptor desensitization revealed that setting either one or the other to zero
affected spike timing only to a small extent (see Supplementary Material,
section S2.2), implying minor effects on information transmission.

The model permitted extending numerical simulations to the exper-
imentally impracticable case of independent activation of the four MF
afferents. Independent input spike trains (with a maximal frequency of
100 Hz) were generated at each of the four MFs, and all the possible

1Supplementary material referred to throughout the letter is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00006-Arleo.
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Figure 2: Increases in neurotransmitter release probability enhance mutual in-
formation in cerebellar granule cells— experiments and simulations with a
restricted mossy fiber input set. (A) A GC was maintained at a membrane
potential between −60 mV and −70 mV, and it was activated through MF stim-
ulations at the times indicated by the arrows. This protocol was repeated 25
times. The responses were recorded before and after delivering a theta-burst
stimulation (TBS) (Nieus et al., 2006) (five selected voltage traces are shown
superposed). In this cell, release probability was p̄ = 0.4 before and p̄ = 0.65
after LTP induction (see Supplementary Material for the p̄ estimation process).
Effective long-term potentiation (LTP) induction is demonstrated by earlier and
more intense spike activation (Nieus et al., 2006). (B) Mutual information (MI)
changed significantly as a function of neurotransmitter release probability, p̄.
The shaded regions show the MI values obtained with the GC model, whereas
the vectors indicate the experimental changes in MI before and after induction
of long-term synaptic plasticity in 10 GCs. The four regions (from bottom to
top) correspond to different numbers of active MFs (one to four). The lower and
upper borders of each computed region were obtained by setting the resting
potential of the GC model at −70 and −60 mV, the two experimental extremes,
respectively. LTP, associated with a p̄ increase, was observed in nine cases, while
in one case with very high initial p̄, LTD (long-term depression) was observed
associated with a p̄ decrease. Note that a 60 ms time window was used to sample
both experimental and simulated GC responses.

input combinations were explored (yielding an extensive set of 65536
stimuli; see section 4). Neurotransmitter release probability p was also
regulated independently at each MF-GC synapse (from p = 0.1 to 0.8,
in steps of 0.1). Consequently the information transmission analysis
was performed for many different p combinations across the four MFs
(e.g., pMF1 = 0.2, pMF2 = 0.8, pMF3 = 0.3, pMF4 = 0.4). Figure 3A displays a
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Figure 3: Increases in neurotransmitter release probability enhance mutual in-
formation in cerebellar granule cells: simulation results with an extended mossy
fiber input set. (A) Responses of the model GC increased their time locking to
the start of the input stimulation after a large increase in release probability p̄
(five sample traces are shown superposed). (B) MI calculated by stimulating
the MF-GC synapses with the extended input set (k = 216 = 65536 stimuli) and
by varying the release probability p on the four MFs independently, within the
range [0.1, 0.8] (Sola et al., 2004). Each data point indicates the MI value cor-
responding to a different combination of p across the four MFs, and the x-axis
provides the p̄ averaged over the four MFs (therefore different MI values can
coexist for any value of p̄). The larger p̄ is, the larger is MI. Note that MI shows a
smooth increase rather independent from the specific p combination used over
the different synapses.

sample response of the model GC to the same stimulus before and after
simulated LTP (i.e., for two different p combinations, with p̄ = 〈pMFi 〉i=1,4).
Figure 3B shows that the MI computed over the extended stimulus set in-
creased as a function of p̄ without saturating (in contrast to the limited set
case of Figure 2B), suggesting that the information transmission averaged
over a large set of MF stimuli may benefit linearly from increasing p̄ values.

2.2 Impact of Release Probability Changes on Single Stimulus Trans-
mission. The surprise measure (see section 4) was used to study the in-
fluence of release probability changes on the transmission of specific MF
inputs. For each p̄ value, all stimuli were ranked according to their surprise
value (e.g., in Figure 4A for p̄ = 0.42), and then different subsets of stimuli
were considered. In the subset of stimuli with surprise larger than 90% of
the maximum (see Figure 4B), after an initial rapid growth for 0.1 ≤ p̄ ≤ 0.5,
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Figure 4: Surprise as a function of neurotransmitter release probability: Simu-
lation results. (A) The surprise measure was used to rank the extensive stimulus
set (k = 216 = 65,536 stimuli), which had p values set independently on the four
MFs within the range [0.1,0.8]. The example given here had an average (over the
four MF-GC synapses) release probability of p̄ = 0.42. (B) The mean surprise
for the (top 10%) most informative stimuli tended to plateau as p̄ increased,
even though MI increased with larger p̄ values (see Figure 3B). For a particular
set of p values, the mean surprise was obtained by averaging over the subset of
stimuli with a surprise larger than 90% of the maximum. Note that the subset
of stimuli contributing to the mean surprise may change with different set of p
values. (C) The mean surprise for the least informative stimuli—stimuli with a
surprise less than 5% of the maximum—was the only subset for which the sur-
prise was monotonously increasing with p̄. See also Supplementary Material,
figure S15 and section S2.4.
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the average surprise tended to plateau around 10.5 bits. This saturation
effect was observed for most of the stimuli (see Supplementary Material,
Figure S15 and section S2.4). Only the surprise averaged over the subset
of stimuli having a surprise smaller than 5% of the maximum showed a
quasi-linear increase with p̄ (see Figure 4C), suggesting that only these
stimuli continued to benefit from increasing p̄ values. Although on aver-
age the information transmitted by the GC increased monotonically with p̄
(see Figure 3B), optimal single-stimulus transmission had already occurred
at intermediate release probability values for most MF inputs, and further
increases in p̄ did not result in larger surprise values.

This finding suggests that transmission of specific inputs was differ-
entially affected by changes in presynaptic release probability. To begin
characterizing the properties of stimuli with optimal transmission at dif-
ferent p̄, simple features such as low versus high firing rate were first
considered. Low-rate stimuli tended to benefit the most from p̄ increases
(see Figure S16). The hypothesis that high-frequency stimuli (as opposed to
low-rate stimuli) had less to gain from an increasing release probability p̄
was confirmed by quantitative analysis (see Figure S17). But how does the
spatiotemporal structure of MF inputs affect neurotransmission in GCs?

2.3 Influence of MF Input Correlations and Spike Timing on Infor-
mation Transmission. In order to reveal the effect of input correlations
on information transmission, the relationship between the surprise of a
stimulus and the correlation C across the four MF spike trains forming the
stimulus was analyzed for each release probability, p̄ (similar to Butts &
Goldman, 2006). The coefficient C measured the average number of coinci-
dent input spikes across the four MFs (see section 4). The surprise tended to
increase as a function of C for all p̄ values, showing that correlated activity
across MFs improves GC neurotransmission (see Figure 5). Moreover, these
findings supplement the observations that GCs operate as coincidence de-
tectors (Moreno-Bote & Parga, 2004) requiring the coactivation of two or
more MFs (D’Angelo et al., 1995; Jorntell & Eckerot, 2006; Eccles et al., 1967).

In order to discard the influence of firing rate on information transmis-
sion and focus on the contribution of single spikes, the surprise per spike
was employed (see section 4). The entire MF stimulus set was ranked accord-
ing to the surprise-per-spike value for all release probabilities, p̄ (see Figure
6A). As shown in Figure 6B.B1, the stimuli with the largest surprise per
spike at low p̄ were characterized by long-correlated MF spike trains (the
blue-labeled patterns), whereas as p̄ increased, the stimuli with greatest sur-
prise per spike were short correlated trains (red-labeled stimuli). As shown
in Figure 6B.B2, the stimuli with lowest surprise per spike at small p̄ did not
have a stereotyped structure, whereas as p̄ increased, they rapidly became
stimuli with at most one spike per bin and therefore no coactivated spikes.

These findings were corroborated by analyzing how the surprise per
spike changed as a function of the correlation C for different release
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Figure 5: Surprise as a function of the correlation across the four mossy fiber
inputs: simulation results. The larger the correlation coefficient C of the stimulus
became, the larger was the information transmitted by the stimulus. C measures
the average number of coincident spikes across the four MF afferents and over
the four time bins (see section 4). This result holds for all release probability
values p̄ ∈ [0.1,0.8]. Nevertheless, the larger the p̄ value was, the more the
surprise saturated with higher C values.

probability values (see Figure 6C). At low p̄, the surprise per spike in-
creased quasi-linearly with the MF spike correlation C, with the peak of
the distribution occurring for long-correlated inputs (blue-labeled stimuli
in Figure 6C, left). By contrast, as p̄ increased, the distribution of the sur-
prise per spike as a function of C became non linear, and the peak of the
distribution increased and occurred for shorter correlated stimuli (red dots
in Figure 6C, center and right). Thus, an increase in p̄ enhanced the surprise
per spike of short correlated stimuli, whereas it favored only partially that
of long highly correlated stimuli, whose surprise per spike saturated and
even decreased at high p̄.

2.4 Influence of Specific Patterns on Information Transmission.
Why did long correlated stimuli benefit less, in terms of information per
spike, from p̄ increases than short correlated ones? A possible explanation
emerged by examining at different p̄ values the GC responses to distinct
MF stimuli. Figure 7A shows both the spikegram and the poststimulus time
histogram (PSTH) of the GC response to a long correlated stimulus (with
four bins with coactivated spikes). For p̄ > 0.5, spike doublets were elicited
by the second set of input spikes (second arrow, p̄ = 0.6 and p̄ = 0.8). The
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Figure 6: Surprise per spike as a function of release probability: simulation
results. (A) The stimuli were ranked as a function of their surprise per spike
for every p̄ value [0.1, 0.8, step of 0.1]. Here, the release probability was equal
for all four MF synapses at the GC; that is, any permutation of the four input
spike trains was equivalent. This reduced the number of different stimuli to
3876 from the initial 216 = 65,536. (B) The sets providing the largest (B1) and
the smallest (B2) contribution to the surprise per spike were selected for three
different p̄ values. A different color map was chosen to identify the number of
bins occupied (blue, green, pink, red for 4, 3, 2, 1 bins, respectively). The number
of spikes per bin modulated the color map (e.g., red to orange for four to one
spikes per bin, within the red color map). At low p̄, the stimuli with the largest
surprise per spike are long-correlated spike trains: four bins with coactivated
spikes at p̄ = 0.1 (e.g., the blue-labeled stimuli in B1). As p̄ increases, the stimuli
with largest surprise per spike are short correlated trains with two or three bins
of coactivated spikes at p̄ = 0.2–0.3, one to two bins at p̄ = 0.4–0.5 (red and pink-
labeled stimuli), and one bin for p̄ > 0.5 (red and orange-labeled stimuli). The
stimuli with the smallest surprise per spike have no stereotyped structure at low
p̄, whereas they are long noncorrelated patterns at high p̄ (e.g., the cyan-labeled
stimuli in B2). (C) Whereas the surprise per spike increased almost linearly with
correlation at the lowest p̄ value ( p̄ = 0.1), the peak of the distribution increased
and moved back as p̄ increases: starting with the highest correlated stimuli at
p̄ = 0.1 with four coactivated spikes in all four bins (blue dots), the peak at p̄ = 0.8
is found for a stimulus with a smaller correlation value, with four coactivated
spikes in only one bin (red dot and red-labeled stimuli). The distribution of
points at p̄ = 0.4 already shows saturation for the long correlated stimuli while
for the shorter correlated stimuli, the distribution starts to peak.
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Figure 7: Spike doublet appearance in GC responses in the presence of high
release probability: Simulation results. (A) GC response (left: spikegram; right:
poststimulus time histogram, PSTH) to a long correlated stimulus at three differ-
ent p̄ values. The stimulus structure is shown in the top-right inset, and arrows
in the time line of the diagrams indicate the input spike timing. For p̄ = 0.6 and
0.8, the second set of spikes (second arrow) elicited a spike doublet, made of
one spike occurring at ∼61 ms, followed by another spike at ∼67 ms (before
the occurrence of the next set of input spikes at 70 ms). Note the double-peaked
PSTH around 70 ms. (B) Surprise per spike of the long correlated stimulus used
in A as a function of release probability.
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doublets disrupted the precise spike timing of the response (evident in the
PSTH after the second response spike), limiting the surprise per spike of
the stimulus despite the improved timing of the first response spike with
respect to the p̄ < 0.5 case (see Figure 7B). The longer the stimulus (i.e.,
the larger the number of bins with spikes), the higher was the probabil-
ity of eliciting spike doublet responses at high p̄ values (see Figure 8C for
other spike doublet examples). This behavior was probably determined
by the engagement of smoothly varying currents, such as the NMDA cur-
rent and the persistent and resurgent Na+ currents (D’Angelo et al., 2001;
Magistretti, Castelli, Forti, & D’Angelo, 2006; Nieus et al., 2006), with in-
creasing p̄. These currents drive repetitive firing and decrease the probabil-
ity of having precise stimulus-locked response spikes.

Which stimuli were the most sensitive to release probability changes? An
answer was obtained by considering the stimuli showing the largest and
the steepest ranking changes in their surprise-per-spike values following
release probability modifications. The largest surprise-per-spike increases
were observed for short stimuli with at least two coactivated spikes in one
bin (see Figure 8A and Supplementary Material, Figure S6). A similar spa-
tiotemporal structure was typically observed for the steepest, and therefore
most rapid, ranking transitions in surprise per spike (see Figure 8B and
Supplementary Material, Figure S7). For these short stimuli, their surprise
per spike increased significantly following small plasticity changes (! p̄ =
0.1). As shown by the spikegrams and the PSTHs of Figures 8A and 8B, the
stimuli with the largest and steepest ranking increases of surprise per spike
produced little activity at low p̄, whereas they elicited better time-locked
responses at high p̄. Finally, the largest and the steepest surprise per spike
ranking decreases were observed for long and highly correlated stimuli
(for which most of the bins were filled with three or four coactivated spikes,
Figure 8C and Supplementary Material, Figure S8).

3 Discussion

This letter provides an analysis of information transmission over a region of
the excitatory input space of a neuron. The direct method to compute mutual
information, MI (Zador, 1998), adopted in this work is usually computa-
tionally impracticable, and it was made possible by the peculiar structure of
the studied system, the cerebellar granule cell (GC) (see Figure 1). Indeed,
the fact that GCs are electronically compact and receive on average only
four mossy fiber (MF) excitatory inputs reduces the state-space dimension-
ality drastically. Still, the MF-GC system is representative because MF-GC
synapses call on the same complex mechanisms mediating information pro-
cessing at most brain synapses (D’Angelo et al., 1995; Nielsen et al., 2004;
Nieus et al., 2006; Sola et al., 2004).

The information-theoretic study presented here explored the relative
contribution of various factors (e.g., spike timing, specific input patterns)



NECO_a_00006-Arleo neco.cls April 26, 2010 22:18

U
nc

or
re

ct
ed

Pr
oo

f

16 A. Arleo et al.

to neurotransmission and investigated how their interrelations changed
following long-term plasticity. The analysis showed that the MF-GC relay
transmitted information via firing rate, spike timing, and spike correla-
tion of MF discharge. Along with its ability to regulate spike frequency
and timing (Nieus et al., 2006), the increase of release probability (p) ac-
companying LTP regulated the amount of transmitted information (Zador,
1998). The main observation is that, on average, information was carried
almost equally by spike frequency and spike timing, and it increased quasi-
linearly with p. On the other hand, it was shown that maximizing release
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probability is not a necessary condition to optimize stimulus-specific in-
formation for most stimuli. Indeed, single-stimulus transmission reached
a plateau at intermediate p values for most MF inputs, with optimal trans-
mission taking place over a large p range (from intermediate values to the
maximum). Interestingly, in this range, the preferred stimulus patterns were
very sensitive to p variations; in other words, small variations of p changed
the subset of stimuli that are best transmitted by the cell. Such intermediate
release probability values reflect the values observed experimentally in the
cerebellar granular layer (Saviane & Silver, 2006; Sola et al., 2004), as well
as in other brain areas (e.g., neocortical pyramid-to-pyramid connections:
Koester & Johnston, 2005; CA3-CA1 hippocampal synapses: Dobrunz &
Stevens, 1997).

Figure 8: Surprise-per-spike changes for exemplar stimuli with highest in-
formation transmission modifications following release probability increases:
Simulation results. (A–C) Information transmission for stimuli with the fourth
largest increase (A), the fourth steepest increase (B), and the fourth largest de-
crease (C) in the rank of the surprise per spike as a function of p̄ (left panels: the
continuous lines indicate the changes in the rank, whereas the dashed curves
denote the absolute values of the surprise per spike). The middle and right
panels show the GC responses to the stimulus as spikegrams and PSTHs, re-
spectively, for three different p̄. The steepest increases and decreases typically
occurred between 0.4–0.6 and 0.3–0.4, respectively. In C, at p = 0.6 and 0.8, note
the spike doublets in response to the second set of input spikes at ∼62 and ∼68
ms before the third set of input spikes at 70 ms. This doublet perturbed the tim-
ing of the following spikes as seen by the wider spread in the PSTH. This spread
is largely responsible for the decline in rank for this stimulus at high p̄. In B,
note the persistent high rank for this stimulus after the rank increase at p̄ = 0.5
(left panel). A doublet to the three-spike bin (second arrow) starts appearing at
p̄ = 0.6 (not shown) and is clear at p̄ = 0.8 with spikes at ∼82 and ∼88 ms in
response to the second set of input spikes (middle and right panels). Hence,
the doublet appearance at p̄ = 0.6 is not the cause of the rank increase at p̄ =
0.5 or of a transmission decrease as for the stimuli in C since its rank remains
high beyond p̄ = 0.6. Thus, when B is compared with A and C, the effect of
the appearance of doublets on surprise per spike is highly stimulus dependent.
For the left panels, the 3876 different stimuli obtained with the same p over the
four synapses ( p̄ = p) were ranked according to the surprise per spike obtained
at a specific p between 0.1 and 0.8. The 10 largest and steepest increases and
decreases in rank were analyzed. In general, it was found that in short notation
(number of spikes per bin with implicit permutation), the largest increases were
for stimuli of the form x2xx or x202 with x = 0, 1; whereas the steepest increases
were for x2xx or x3xx, x = 0, 1, 2; and the largest decreases were for xyy4, x =
1,2,3,4; y = 3,4.
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In this study, the influence of the Golgi cells (GoCs) was omitted to fo-
cus on the GC encoding of its excitatory inputs only. In fact, the series of
analyses presented here did not aim at providing a comprehensive char-
acterization of the information transmission process in the granular layer;
rather, it was meant to set forth an information-theoretic framework suit-
able for studying the efficacy of GC information processing quantitatively.
At this stage, GoC inhibition was not included because a thorough under-
standing of the synaptic transmission at the MF-GoC relay is still missing
(Forti, Cesana, Isope, Dieudonné, & D’Angelo, 2008). In addition, the study
of quantal release properties of GoC-GC synapses has been addressed only
very recently (Mapelli, Rossi, Nieus, & D’Angelo, 2009). Further analyses
will be carried out to quantify the effects of Golgi inhibition onto GC neu-
rotransmission by means of a cerebellar GABA synaptic model accounting
for recent experimental evidence (Mapelli et al., 2009) at this synapse (see
also Bezzi, Nieus, Arleo, D’Angelo, & Coenon, 2004, for preliminary work
in this direction). GoCs fire autorhythmically at 2 to 4 Hz in vitro (Forti,
Cesana, Mapelli, & D’Angelo, 2006) and at around 10 Hz in vivo (Vos,
Wijnants, Taeymans, & de Schutter, 1999), and their discharge frequency
can be raised up to 300 Hz on stimulation. It is worth mentioning that
even under such strong inhibitory conditions, GCs are still able to display
short-burst activity (D’Angelo & De Zeeuw, 2009). Following stimulation
of the whisker pad, GoCs in anesthetized rats follow a stereotyped firing
pattern characterized by bursts of two or three spikes, followed by pauses
of around 100 ms. Moreover, the cerebellum displays oscillatory activity at
theta frequency (Hartmann & Bower, 1998), and a cerebellar network model
suggested that these oscillations are characterized by a highly synchronous
activity of GoCs and GCs (Maex & Schutter, 1998). In all these studies, the
GoCs appear to regulate the narrow time window during which GCs may
fire (D’Angelo & De Zeeuw, 2009; Kistler & De Zeeuw, 2003; Solinas et al.,
2007a, 2007b).

The synaptic model used here was stochastic (see section 4; see also
Sun, Lyons, & Dobrunz, 2005). It presented both facilitation and depres-
sion depending on the release probability p and spike activity (Nieus et al.,
2006; Tsodyks & Markram, 1997). Hence, the calculations of information
presented here extend those that have thus far been investigated using de-
pressing synapse (de la Rocha & Parga, 2005; Goldman, 2004), and constant-
transmission-probability models (Manwani & Koch, 2001; Zador, 1998).
Recently an information-theoretic measure, namely, the synaptic informa-
tion efficacy (SIE) (London et al., 2002), has been introduced to quantify
the transmitting properties of a single synapse. SIE is actually the mutual
information (MI) between the presynaptic input spike trains and the post-
synaptic responses. In this study, MI was measured across only a single
synapse, while considering the rest of the dendritic input as background
noise (London et al., 2002). Similarly, other studies using different analytical
approaches have focused on the transmitting properties of single synapses
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(de la Rocha et al., 2002; Goldman, 2004; Manwani et al., 2002; Tiesinga,
2001). In addition, although input correlations have been shown to be rel-
evant to neuronal computation (de la Rocha & Parga, 2005; Schreiber, Fel-
lous, Tiesinga, & Sejnowski, 2004; Tiesinga & Toups, 2005), many studies
have investigated conditions in which they are absent (London et al., 2002;
Manwani & Koch, 2001; Zador, 1998). This study complements these previ-
ous works by presenting a quantitative characterization of how the corre-
lation across multiple synaptic inputs of a neuron may contribute to infor-
mation transmission.

Our results corroborate the hypothesis that the correlation among the in-
puts plays a crucial role in affecting neurotransmission at all levels of release
probability p. Our analysis strengthened this observation by showing how
the spatiotemporal structure of MF inputs affected GC neurotransmission
as a function of p. The most sensitive stimuli to release probability changes
were identified in terms of both surprise and surprise per spike. Short
correlated MF bursts resulted to benefit the most from p increases. Long
correlated stimuli caused changes in neurotransmission and excitation dy-
namics at high p, which bounded their transmission reliability. These results
are consistent with previous findings suggesting that when the synapses are
tuned toward specific input stimuli, one of the roles of LTP and LTD may
be that of generating spike train–specific nonlinear detectors (Natschlager
& Maass, 2001; Sharpee et al., 2006), which would regulate the transmis-
sion of specific spatiotemporal input patterns at the level of the neuron.
The preferential recoding of the information contained in certain patterns
may be of biological relevance for computation at subsequent stages in the
cerebellar cortex. For instance, two spikes in close succession lead to the
opening of presynaptic NMDA channels and start a cascade of events lead-
ing to long-term plasticity at the synapses between the Purkinje cells (PCs)
(Casado, Isope, & Ascher, 2002) and the parallel fibers (PFs), which are the
axons of the GCs. Recoding following granular layer plasticity could also
have the effect of reducing the length of PF spike trains, thereby increasing
the timing accuracy of the PC responses.

Naturally, to provide definite answers beyond the neuronal level, cod-
ing strategies need to be evaluated within a cerebellar network (Coenen,
Arnold, Sejnowski, & Jabri, 2001; Philipona & Coenen, 2004) by means
of large-scale simulations, where plasticity may also regulate the average
GC population firing and the duration of multiple PF activation neces-
sary to elicit a PC response. Therefore, the information-theoretic approach
presented here constitutes a step forward in the investigation of neural in-
formation transfer in the granular layer network of the cerebellum. Scaling
from elementary cellular mechanisms such as synaptic release probabil-
ity to network computation is fundamental to understanding how MF-GC
long-term plasticity, by being instrumental in the control of information
transmission, may regulate the operations to which the cerebellum partici-
pates (Dum, Li, & Strick, 2002).
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4 Materials and Methods

4.1 Biophysical Model of the MF-GC Synaptic Relay. A stochastic
version of our previous models (D’Angelo et al., 2001; Nieus et al., 2006)
was developed for this study (see also Sun et al., 2005). The GC model was
provided with four independent MF-GC synaptic contacts endowed with
stochastic neurotransmitter release mechanisms. Each synaptic contact con-
sisted of three independent releasing sites (RS) (Saviane & Silver, 2006; Sola
et al., 2004), each governed by a three-state presynaptic model (Tsodyks &
Markram, 1997). Neurotransmitter release was modeled as a system of four
first-order differential equations relating the probability of release (p) to the
available (X), released (Y), and recovered (Z) neurotransmitter resources
(Nieus et al., 2006; Tsodyks & Markram, 1997) (see Supplementary Mate-
rial). The release was made probabilistic and modeled as an all-or-none
process by comparing a random number (ε) drawn from a uniform [0, 1]
probability distribution with the released resources Y. Hence, a wave of
glutamate (Nieus et al., 2006) was released from the RS whenever ε was less
than Y, so that averaging over numerous independent Ys led to recovery of
the behavior of the deterministic release model (Nieus et al., 2006; Saviane
& Silver, 2006; Sola et al., 2004). Each RS activated an independent post-
synaptic site endowed with AMPA and NMDA receptors. Because three
RS/contact (Saviane & Silver, 2006) were introduced, each postsynaptic
site was calibrated to contribute one-third of the total conductance (Nieus
et al., 2006). Since no evidence for p heterogeneity was reported (Sola et al.,
2004), p was set at the same value for all releasing sites at the same synapse.
(Further details on the biophysical model can be found in Supplementary
Material, section S1.1.)

First, a series of simulations was run by adopting the same stimulation
protocol used for the patch clamp experiments (see section 2 and Figure 2).
Then the input space was extended by considering the four MF afferents as
four independent spike trains and regulating the neurotransmitter release
probability p at each MF-GC synapse independently (e.g., see Figure 3).
All possible combinations of input spike trains lasting up to 40 ms, as
binary words of 10 ms bins (i.e. with a maximum rate of 100 Hz), were then
created. Thus, each MF spike train was encoded as a four-bit binary word,
and the cell input was a 4 (number of MFs) × 4 (number of bits for each
MF) = 16 bit binary word. Accordingly, the entire input space consisted
of 216 = 65536 stimuli. GC responses were digitalized using temporal bins
of 6 ms over a period of 120 ms (see Supplementary Material, section S2.1,
for a discussion on the dependence of the results upon the bin size used
to sample GC responses). Each stimulus was presented 400 times, and the
effect of limited sampling on MI computation was taken into account (see
Supplementary Material, section S1.3).

To simulate natural firing activity in MFs, all 65,536 stimuli occur-
ring with different probabilities, p(s), were considered. The actual firing
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distribution of MFs is not known, but following Treves, Panzeri, Rolls,
Booth, and Wakeman (1999), a continuous unimodal distribution (with a
single peak close to the spontaneous activity, i.e., close to zero in our case)
with an exponential tail was assumed. This distribution has been observed
in other brain areas, among them, the frontal cortex (Abeles, Vaadia, &
Bergman, 1990), hippocampus and close structures (Barnes, McNaughton,
Mizumori, Leonard, & Lin, 1990), visual cortex (Baddeley et al., 1997;
Franco, Rolls, Aggelopoulos, & Jerez, 2007), as well as used in previous neu-
ral network models (Treves & Rolls, 1991). For this study, a decreasing expo-
nential distribution of firing rate with a mean of 10 Hz was chosen. Another
distribution with similar features (i.e., Poisson) was also tested, and com-
patible results were obtained (see Supplementary Material, section S2.3).

The model was implemented with NEURON 5.4. The most demanding
numerical simulations were run on a cluster of 20 CPUs (1.7 GHz each).

4.2 Electrophysiological Recordings. Whole-cell patch clamp record-
ings of GCs were performed from acute cerebellar slices of P18-P23 Wistar
rats according to published procedures (D’Angelo et al., 1995; Sola et al.,
2004) (see Supplementary Material, section S1.2). Varying the intensity of
MF stimulation permitted generating simultaneous activity in one to four
MFs. The core experiment was carried out in current-clamp mode. MFs
were stimulated by a set of spike trains lasting 40 ms and with a frequency
up to 100 Hz. To investigate the effect of long-term synaptic plasticity on
MI, the same set of stimuli was presented before and after LTP induction
by theta-burst stimulation (TBS: 8 100 Hz bursts lasting 100 ms every 250
ms) (Nieus et al., 2006; Sola et al., 2004) (see Supplementary Material, Fig-
ure S2). The mean MF-GC release probability p̄ was estimated in voltage
clamp, at the beginning and at the end of each experiment, by analyz-
ing the excitatory postsynaptic currents (EPSCs) elicited by four stimuli at
100 Hz (Nieus et al., 2006; see Supplementary Material, Figure S3).

GC responses were spike-sorted via a threshold crossing procedure (Igor;
WaveMetrics Inc.). To compute MI, both input (MF) and output (GC) spike
trains were transformed into binary words (see Figure 1). MF spike trains
were digitized by using a temporal bin of 10 ms. Because each stimulus
lasted 40 ms and all MFs received the same spike train, the input set con-
sisted of 24 = 16 stimuli. Each stimulus was presented 25 times. The GC
responses were digitized by using a 6 ms bin width. A 60 ms time window
was used for sampling the GC output; the spikes occurring beyond this
time window (less than 1% of all spikes) were not taken into account to
reduce the dimensionality of the sampling space. The significance of MI
measurements was assessed by a bootstrapping procedure (Lu & Wang,
2004) of 1000 repetitions). MI proved to be statistically significant (p < 0.05)
for MI > 0.4 bits.

All experiments were carried out according to the guidelines and regu-
lations laid down by the institution’s animal welfare committee.



NECO_a_00006-Arleo neco.cls April 26, 2010 22:18

U
nc

or
re

ct
ed

Pr
oo

f

22 A. Arleo et al.

4.3 Theoretical Analysis

4.3.1 Mutual Information and “Surprise.” The mean information trans-
mitted between the GC responses r and the MF inputs s was calculated
by using Shannon’s mutual information (MI), equation 1.1, where both the
stimuli s and the responses r were represented as either binary words (see
Figure 1) or spike counts. The binary word coding preserves the informa-
tion about spike timing, up to a certain precision, whereas the spike count
coding simply assesses the information transmitted by the neuron average
firing. The data processing inequality (Cover & Thomas, 1991) ensures that
MI obtained using spike counts is always not greater than the MI obtained
using binary words.

To isolate the specific contribution of a single stimulus s to MI, the
stimulus specific surprise (called simply surprise here) was used (Butts &
Goldman, 2006; DeWeese & Meister, 1999):

I1(s) =
∑

r∈R

p(r | s) log2
p(r | s)

p(r )
. (4.1)

The surprise measures how much the conditional distribution p(r | s)
differs from the prior probability distributionp(r ), corresponding to the so-
called Kullback-Leibler distance. The surprise per spike was then computed
by dividing the surprise by the spike count of the input stimulus. Normal-
izing by the number of input spikes essentially removes the linear part of
the contribution of MF firing rates to information transmission.

Both MI and the surprise measure have a systematic bias due to the
limited data samples available (Nemenman, Bialek, & de Ruyter van
Steveninck, 2004; Paninski, 2003; Strong, Koberle, de Ruyter van Steveninck,
& Bialek, 1998; Treves & Panzeri, 1995). This issue is treated in the Supple-
mentary Material, section S1.3.

4.3.2 Correlation Measure. To estimate the number of coincident spikes
across the four MF inputs, the normalized average of the pair-wise cor-
relation over all the different pairs of MFs was computed. Let s ∈ S be a
stimulus constituted by four MF patterns, and let xi and xj denote the input
spike trains representing the activity on the ith and the jth MF, respectively.
The correlation coefficient C(s) was taken as

C(s) = 1
N

· 〈(K (xi ) − x̄) · (K (xj ) − x̄)′〉i> j ,

where x̄ represents the average firing rate, N is the normalization factor
equal to the number of input bins, and K (x) denotes a smoothing function
(i.e., an exponential kernel with τ equal to the input bin width) that takes
into account the effects of the short-time integration over the membrane
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time constant. The C(s) vector, for all s ∈ S, was then rescaled into the range

[0, 1]. For example, C(s) = 0.4039 for s =


1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

, whereas C(s) = 0.1561

for s =


0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

.
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