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bstract

Most neural communication and processing tasks are driven by spikes. This has enabled the application of the event-driven
imulation schemes. However the simulation of spiking neural networks based on complex models that cannot be simplified to
nalytical expressions (requiring numerical calculation) is very time consuming. Here we describe briefly an event-driven simulation

cheme that uses pre-calculated table-based neuron characterizations to avoid numerical calculations during a network simulation,
llowing the simulation of large-scale neural systems. More concretely we explain how electrical coupling can be simulated efficiently
ithin this computation scheme, reproducing synchronization processes observed in detailed simulations of neural populations.
2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

One of the abilities of biological neural systems is
heir parallel information processing. The study of the
ynamics of the cells that form these massively parallel
omputation systems is still an open issue (D’Angelo

t al., 2001; Koch, 1999). Most of the computations
hat take place in these systems are spike driven: a
pike that arrives to a target cell affects its state, pro-
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ducing a transient behaviour. Besides, in some mod-
els, the neural state evolution can be predicted. This
has motivated the development of event-driven sim-
ulation schemes (Delorme and Thorpe, 2003; Mattia
and Guidice, 2000; Reutimann et al., 2003). Some
approaches simulate simple neural models in which
the new neural state can be calculated after an input
spike with a simple expression (Delorme and Thorpe,
2003). Other approaches use iterative calculation dur-
ing the simulation to obtain the future neuron state of
more complex models (Makino, 2003). Some authors
use lookup tables to support concrete features such as

stochastic dynamics (Reutimann et al., 2003). In our
approach, the complete neural dynamics are compiled
into lookup tables to enable the efficient simulation of
detailed neural models which traditionally required time-

ed.
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driven approaches. Therefore during the event-driven
simulation, only table accesses are needed in order to
calculate the neuron state evolution.

The short-term dynamics defined by complex dif-
ferential equations which require numerical calculation
are computationally costly to simulate. We have devel-
oped an event-driven computation scheme that uses pre-
calculated short-term dynamics which are stored on cell
characterization tables, enabling the simulation of mod-
els of different degree of complexity (limited by the
size of the tables required to store the model). In this
way, an event-driven computation scheme in which the
cells states are only updated at the arrival of spikes
represents a very efficient tool for the simulation of
large-scale systems. Network long-term dynamics (for
instance learning models) can be simulated on a differ-
ent time scale. We can adopt an event-driven scheme if
the leaning mechanisms to be simulated are driven by
spikes.

The two assumptions that are done to develop the
event-driven computation scheme based on tables are
the following: (a) the effect of a spike on a target neuron
state can be predicted (since the simulation time jumps
from one event to another, the neuron state must be also
updated discontinuously, as indicated in Section 2) and
(b) the number of inter-related variables that define the
cell model dynamics is not very large (this makes the
number of needed table dimensions affordable).

The process of building up cell models and setting up
a system scale simulation requires of different stages:

(1) Detailed neuron model simulation.
Detailed simulations of neural models are done

with specific tools such as NEURON (Hines and
Carnevale, 1997) or GENESIS (Bower and Beeman,
1998). A simplification process leads to simplified
models characterized by a reduced number of vari-
ables and differential equations.

(2) Table definition.
We define the table structure that will be used

by the simulator to calculate the neural state evolu-
tion of a synaptic-conductance-based neural model
online quickly, for instance synaptic conductance
decay gexc(�t) and ginh(�t), firing time prediction
tf(Vm,t0 , gexc,t0 , ginh,t0 ) and the membrane potential
evolution Vm(Vm,t0 , gexc,t0 , ginh,t0 , Δt). All these
variables depend on their previous states (at the last
time they where updated t ), the previous state of
0
other variables or the time elapsed �t since then.

(3) Compilation of the characterization tables.
All the transient dynamics of the cells are simu-

lated off-line. This requires massive numerical com-
Fig. 1. Block diagram of components of the event-driven simulation
scheme.

putation to sample the cell behaviour accurately
when using complex neural models. This massive
computation consists roughly on single cell simula-
tions under different conditions. This can be easily
parallelized in clusters of computers if a very fast
table creation process is required.

(4) Efficient neural system simulation.
We run the event-driven simulation scheme that

uses efficiently these tables to avoid online numeri-
cal calculations (this is briefly described in the next
section).

In the next section we describe briefly the table-based
event-driven computation scheme (see Fig. 1). In Section
3 we describe how electrical synapses can be simulated in
the presented computational approach. Furthermore, we
show some illustrative results of neural population syn-
chronization processes facilitated by electrical coupling.
This experiment is motivated by different reasons: (1)
validation of the implementation of electrical synapses,
(2) the event-driven simulation of neural synchroniza-
tion processes in highly interconnected large networks
with arbitrary delays may become a challenge, because
a large number of events are fired in a short time inter-
val (which may lead to saturation of the event reordering
data structure), and finally (3) synchronization processes
seem to play an important role in the computations occur-
ring within the molecular layer of the cerebellum, and
should be integrated in further cerebellar simulations (we
plan to study the role of this computational primitive in
the sparse coding that is generally assumed to take place
within the cerebellar granular layer).

2. Table-based event-driven computation scheme
The characterization of the neural dynamics requires
a finite number of cell simulations under different ini-
tial conditions during a finite time interval (e.g. 50 ms).
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herefore, we sample the neural behaviour in a num-
er of possible transient dynamics. A priori knowledge
bout the waveform of the target functions helps to opti-
ize the table’s size by compression techniques such as

ogarithm sampling of exponential-like functions.
In the event-driven scheme the neuron variables need

o be updated only when the cell receives or fires a spike
since the firing time is delayed and arbitrary delays are
llowed, two events are needed to be generated for each
euron spike). Therefore, the simulation time (t) jumps
rom one event to next one. It is mandatory to process
ll the events of the network in chronological order. This
equires a re-ordering process each time that a new event
s produced or processed. In order to optimize the time
equired for this task we have chosen a “heap data struc-
ure” (Aho et al., 1974; Williams, 1964) to store the
nput and output events. This data structure minimizes
he time required by the re-ordering process, offering a
ood performance even for a high global activity or heap
ccupancy. Each time that an output spike is produced, a
onnection table is consulted and input spikes to the tar-
et neurons are inserted into the event heap sequentially
in order not to overload this data structure) according to
he connection delays. Events affecting a cell state may
esult in the invalidation of some predicted spikes of the
eap. This is checked out each time that a new event is
rocessed.

The computation scheme processes two kinds of
vents:

Output event.
◦ Update the neural variables to the post-firing state.
◦ Insert a new output event into the heap if the neuron

is able to fire again in the absence of stimuli.
◦ Insert the input event with the shortest delay of the

connection table into the spike heap.
Input event.
◦ Update the neural variables consulting the charac-

terization tables.
◦ Insert a new output event into the heap if the neuron

is able to fire in the absence of further stimuli.
◦ Insert the next input event from the connection table

(the next one with the shortest delay).

The implemented synaptic-conductance-based neu-
al model with delayed firing (Ros et al., 2006) can be
apped into the following characterization tables (A
ore complex neural model would require a greater
umber of tables):

Synaptic conductances: gexc(�t) and ginh(�t) are
tables used to update the conductance values depend-
ing on the time elapsed since the last input spike.
s 87 (2007) 275–280 277

• Firing time: tf(Vm,t0 , gexc,t0 , ginh,t0 ) is a table used to
predict the time of next output spike produced by the
cell if it does not receive any further stimuli.

• Membrane potential: Vm(Vm,t0 , gexc,t0 , ginh,t0 , Δt) is
a table describing the membrane potential evolution
after receiving an input spike.

The event-driven computation scheme allows the sim-
ulation of large-scale spiking networks. The computation
speed depends on the network activity (spikes per sec-
ond) almost linearly whereas the network size has little
influence. With a conventional computing platform (Pen-
tium IV at 1.8 GHz) we are able to process 8 × 105

spikes/s. We have evaluated the performance of the com-
putation scheme with different network sizes and average
activity. For instance, 1 s of simulation of a network
of 8 × 104 cells with an average firing rate of 10 Hz
takes less than a second, thus it can be done in real-
time.

After characterizing different types of cerebellar neu-
rons (Granule, Golgi, Purkinje, deep cerebellar nuclei
cells and interneurons), the described approach is being
used to simulate in real-time cerebellar adaptive mod-
els (Boucheny et al., 2005). Currently, simulations on a
dual Pentium IV 2.8 GHz platform, of a cerebellar model
of 2080 cells with 52,000 synaptic connections and a
global activity of approximately 106 spikes per second,
runs in real-time including learning and input/output
translations related with robot control (Boucheny et al.,
2005).

3. Neural population synchronization facilitated
by electrical coupling

It is believed that electrical synapses facilitate the
synchronous firing of interconnected cells (Chez, 1991;
Kopell and Ermentrout, 2004; Kepler et al., 1990; Traub
and Bibbig, 2000; Draghun et al., 1998). These synapses
are characterized by extremely fast transients, through
direct flow current. The gap junctions usually have a
very low conductance (approximately 100 pS according
to Neyton and Trautmann, 1985), so we neglect sub-
threshold electrical coupling. This assumption directly
allows the efficient simulation of electrical synapses
on an event-driven scheme. In this way, a neuron only
affects other cells connected by electrical synapses when
an action potential is fired. During the action potential
effect (1.5 ms approximately) we increase the mem-

brane potentials of the connected cells by an amount
that depends on the coupling ratio (electrical connection
weight). Unidirectional electrical synapses have been
documented (Furshpan and Potter, 1959), therefore we
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implement internally unidirectional coupling since bidi-
rectional coupling can be simulated defining two unidi-
rectional connections.

3.1. Implementation of electrical connections on an
event-driven scheme

In one possible implementation, when a neuron with
electrical synapses fires a spike, two events are inserted
into the heap:

• Starting event. Indicating the initial time of elec-
trical coupling effect. In fact, normally no delay is
introduced (although it is allowed by the simulation
scheme) since this kind of synapses is characterized
by its rapid response. When this event is processed the
simulation kernel increments the membrane potential
of the target cell by an amount that depends on the
connection weight.

• Ending event. Indicating the termination of the electri-
cal coupling on the target neurons. When this event is
processed, the simulation kernel decrements the mem-
brane potential of the target neuron in the same amount
that it was increased by the staring event.
Usually an interval of 1.5 ms is left between the start-
ing and ending events. In this way, the effect of electrical
coupling is a very fast increment of the membrane poten-

Fig. 2. Illustration of the effect produced by electrical coupling in the simula
the membrane potential evolution in the absence of electrical coupling. The b
the electrical coupling. In fact, since the membrane potential of the cell is clo
electrical connection, it forces the neuron to fire synchronously.
s 87 (2007) 275–280

tial of the target neurons during a short time interval. As
commented before, the electrical coupling is driven by
action potentials since we are neglecting sub-threshold
electrical coupling.

This implementation has been discarded because the
large amount of generated ending events that need to
be stored on the event reordering structure when the
starting event is processed, producing a computational
bottleneck.

Another choice that has been tested is the inclusion
of a single event that initiates a triangular spikelet on the
target neuron membrane potential. In order to implement
this, the neuron includes a variable that stores the instant
at which the effect finishes and the current amplitude
of the spikelet (defined by the strength of the coupling).
When the membrane potential is updated due to other
events, these variables are consulted to know if there is
any spikelet still present in the neuron membrane poten-
tial and to calculate its current amplitude (the amplitude
of the simulated spikelet decrements linearly. See Fig. 2).
The final membrane potential is calculated adding its cur-
rent value and the current spikelet amplitude.

3.2. Simulation of neural population

synchronization processes

Electrical coupling has been proven to be an effective
synchronization mechanism (Kopell and Ermentrout,

tion. The upper plot show the input spikes. The middle plot illustrates
ottom plot illustrates the spikelets (coupling potentials) produced by
sed to the firing threshold when it receives the first spike through the
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004; Kepler et al., 1990; Traub and Bibbig, 2000;
raghun et al., 1998) and there are many examples
f electrical coupling between inhibitory neurons in
he nervous system (Gibson et al., 1999; Long et al.,
004; Mann-Metzer and Yarom, 1999). Here we want
o evaluate the simulation of electrical coupling within
n event-driven scheme. For this purpose, we simu-
ate a neural network of 100 cells receiving spikes
t an average rate of 200 Hz with a standard devia-
ion of 0.1 through excitatory synapses. These input

pikes encode a constant bias and a random com-
onent. The cells are interconnected with inhibitory
ynapses and electrical coupling with an all-to-all
opology. The network consists of 100 neurons with

ig. 3. Neural population synchronization histograms. (a) Only electrical

inh = 1.65 nS. (c) Inhibitory synapses (Ginh = 1.65 nS) and electrical coupli
lmost since the beginning (the frequency is higher in (a) because there is no
s 87 (2007) 275–280 279

100 input excitatory synapses (one per cell), 10,000
inhibitory synapses and 10,000 electrical connections.
We have used neurons that intend to emulate cere-
bellar interneurons (Ros et al., 2006), using the fol-
lowing characterization parameters: membrane capac-
itance Cm = 30 pF; time constants of the excitatory and
inhibitory synapses τexc = 0.5 ms and τinh = 2 ms; rest-
ing conductance Grest = 0.2 nS; excitatory and inhibitory
reversal potentials Eexc = 0 V and Einh = −80 mV; resting
potential Erest = −70 mV; firing threshold Vth = −60 mV.

This cell profile has been used to extract the charac-
terization tables through intense numerical calculation
using a conductance-based-synaptic-input neural model
(Gerstner and Kistler, 2002) before the event-driven sim-

coupling with coefficient 0.02. (b) Only inhibitory synapses with
ng (coefficient of 0.02); there are no neurons firing asynchronously
inhibition).
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ulation. The computing scheme processes everything in
real-time (i.e. the computation time is much shorter than
the simulated time; 1 s of simulation takes about 0.4 s),
since no numerical calculation is required during the
event-driven simulation.

In Fig. 3 we show the obtained synchronization his-
tograms using inhibition and electrical coupling. These
results are very similar to the ones obtained in Kopell
and Ermentrout (2004) using a network of quadratic
integrate-and-fire neurons (Latham et al., 2000); the syn-
chronization was created quickly and multiple clusters
of cells were not observed (see Fig. 3). This validates
our electrical coupling approach and proves event-driven
simulation scheme to be an efficient tool to study this
kind of processes or to apply them in neural network
running in real-time.

4. Conclusions

In this contribution we present an efficient event-
driven driven computation scheme based on pre-
calculated characterization tables. Particularly, we
describe how to embed electrical coupling in the event-
driven simulation scheme. We validate the simulation
approach with illustrative simulations of spiking neural
networks that self-synchronize by means of inhibition
and electrical coupling. We obtain results similar to those
observed in neural networks simulated with time-driven
schemes and realistic model described by differential
equations.

This tool enables very fast simulation of large-scale
systems. Therefore, it opens the door to massive sim-
ulations that can address more specific studies on the
role of chemical and electrical synaptic connections in
the framework of neural population time coding and
information processing in biologically realistic neural
networks in real-time.
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