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Abstract— Many computational models of vestibulo-ocular
reflex (VOR) adaptation have been proposed, however none of
these models have explicitly highlighted the distinction between
adaptation to dynamics transformations, in which the intrinsic
properties of the oculomotor plant change, and kinematic trans-
formations, in which the extrinsic relationship between head
velocity and desired eye velocity changes (most VOR adaptation
experiments use kinematic transformations to manipulate the
desired response). We show that whether a transformation is
kinematic or dynamic in nature has a strong impact upon
the speed and stability of learning for different control archi-
tectures. Specifically, models based on a purely feedforward
control architecture, as is commonly used in feedback-error
learning (FEL), are guaranteed to be stable under kinematic
transformations, but are susceptible to slow convergence and
instability under dynamics transformations. On the other hand,
models based on a recurrent cerebellar architecture [7] perform
well under dynamics but not kinematics transformations. We
apply this insight to derive a new model of the VOR/OKR
system which is stable against transformations of both the plant
dynamics and the task kinematics.

I. INTRODUCTION

The vestibulo-ocular reflex in mammals acts during head
rotations to stabilize gaze by counter-rotating the eyes. The
characteristics of this reflex are not fixed, but can be modified
through experience. For instance, if lenses are worn which
magnify the image of the external environment on the retina,
the required eye movement to stabilize gaze following a given
head movement changes. After a suitable amount of training
under these new conditions, the VOR becomes recalibrated
so that even in the dark, the response of the VOR is altered
[2].

II. COMPUTATIONAL MODELS OF VOR ADAPTATION

Computationally, VOR adaptation is often viewed as the
process of learning an inverse dynamics model of the ocu-
lomotor plant, which may change through growth, ageing or
disease. The role of the task kinematics is often overlooked.
Fig. 1 gives a schematic illustration of the vestibulo-ocular
system. P represents the oculomotor plant, B represents the
neural control circuitry, and K represents the task kinematics
which dictate the required eye movement following a given
head movement.

Fig. 1. Basic framework of the VOR model.

Since the inertia of the oculomotor plant is very low, we
will assume a first order oculomotor plant for which the
forward dynamics is given by

P : (y, u) → ẏ, (1)

where y is the current eye position, u is the motor command
supplied to the plant and ẏ is the resulting eye velocity. The
inverse dynamics model is correspondingly defined as

P−1 : (y, ẏ∗) → u. (2)

P−1 maps the current eye position y and some desired eye
velocity ẏ∗ to a motor command u which achieves this.

Let us define retinal slip r as the velocity of the image
on the retina in degrees/sec. In the context of the VOR and
OKR, the desired eye velocity ẏ∗ is defined as the unique eye
velocity that results in zero retinal slip. ẏ∗ depends primarily
on the angular velocity of the head, ẋ, which is measured by
the vestibular system (ẏ∗ may also depend on eye’s angular
position y [8]). u∗ is defined as the motor command which
achieves the desired eye velocity ẏ∗ when supplied to the
plant,

u∗ = P−1(y, ẏ∗). (3)

In most VOR models, desired eye velocity is taken as equal
and opposite to head velocity, i.e. ẏ∗ = −ẋ. However, in
general, this is not the case.

Most VOR gain adaptation experiments work by directly
manipulating the relationship between head velocity and
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desired eye velocity, not by changing the properties of
the oculomotor plant. This includes any experiment using
prisms or lenses or vestibular mismatch experiments in which
an external visual stimulus is moved in phase with head
movements.

VOR adaptation therefore cannot be regarded as simply a
process of learning the inverse dynamics of the oculomotor
plant. Fundamental to VOR adaptation is the need to adapt to
changes in the kinematics of the task, that is, the relationship
between head movement and required eye movement, as
illustrated in Fig. 1.

More formally, we can define a forward kinematics model

K : (y, ẋ) → ẏ∗ (4)

and corresponding inverse kinematics model

K−1 : (y, ẏ) → ẋ. (5)

K gives the desired (gaze-stabilizing) eye movement as a
function of head velocity ẋ and eye position y, while K−1

gives the head rotation that would have required an eye
movement ẏ∗ to stabilize gaze.

In general, the kinematic mapping K incorporates effects
due to distortion of the visual image before reaching the
eye, movements of the external scene which are correlated
with head movement (visual-vestibular mismatch), off-axis
effects and innaccuracies or nonlinearities in the vestibular
measurements of ẋ. VOR adaptation must, either explicity
or implicitly, reflect learning of this kinematic mapping as
well as the plant dynamics.

Hence from (2) and (4) the overall mapping which must
be learnt is a composite function

u = P−1(y,K(y, ẋ)). (6)

This distinction between kinematics and dynamics and their
different roles in the motor task must be taken into account in
modelling the VOR. As we shall see, the failure of previous
models to do so means they are susceptible to instability
following changes in either the kinematics or the dynamics.

III. CEREBELLAR LEARNING OF INTERNAL MODELS

It is well known that the cerebellum plays a crucial role
in VOR adaptation. The VOR is comprised of a fixed, direct
pathway through the brainstem, which is augmented by an
adaptive pathway through the cerebellum. Physiological stud-
ies have shown that as well as receiving the same vestibular
input as the brainstem, the cerebellum receives an efferent
copy of the final motor command [4]. Most VOR models have
tended to disregard these recurrent connections, modelling
the brainstem and cerebellar pathways as having a purely
feedforward architecture [3], [6], [8] (see Fig. 2(a)). More
recently, Porril and Dean [7] have advocated a recurrent
cerebellar architecture model which emphasizes the efferent
motor command inputs to the cerebellum (Fig. 2(b)). The

choice of architecture (feedforward or recurrent) turns out to
have a significant impact upon learning, as we shall see.

For the purpose of illustration, we will assume the stan-
dard Marr-Albus-Ito model of cerebellar learning [5] which
essentially models the cerebellum as a single layer neural
network. The cerebellar output is given by

c(t) =
∑

i

wigi(t),

where gi(t) is the activity of the ith parallel fibre and wi is
the strength of the corresponding Parallel fibre-Purkinje cell
synapse.

Learning is driven by the climbing fiber signal e(t) which
corresponds to the error in c(t). A simple learning rule
which approximately captures the known plasticity laws at
the synapses is

ẇi = −βgi(t)e(t). (7)

This is equivalent to performing gradient descent on the
squared error, provided e(t) really does reflect the error in
the cerebellar output.

We do not, however, have explicit knowledge of the
error in the cerebellar output. We can only measure the
error in performance in terms of retinal slip. This poses a
distal learning problem which can be solved by finding an
appropriate mapping between the retinal slip r and the error
in the cerebellar output eC .

In order to calculate this, we need to know exactly what
the desired output of the cerebellum is. This turns out to de-
pend strongly on the architecture (feedforward or recurrent).
Previous analyses have only taken dynamics transformations
into account. In this case, (i.e. ignoring kinematics for the
moment) under the feedforward architecture, the error in the
cerebellar output is equal to the error in the motor command.
Porrill and Dean [7] have shown that under the recurrent
architecture, the error in the cerebellar output is in fact equal
to the raw retinal slip signal, circumventing the distal learning
problem. However, both of these results were obtained by
assuming that the desired eye velocity is exactly equal to the
current head velocity (i.e. trivial kinematics).

We will now examine learning within each of these ar-
chitectures when both the kinematics and the dynamics are
subject to change. In both cases, we require an expression
for the error in the cerebellar output, eC , in terms of the
observed retinal slip, r. For simplicity we will assume linear
plant, cerebellum and brainstem dynamics. We will point out
in the derivations exactly where linearity is exploited.

A. Feedforward Architecture

Let us refer to the feedforward architecture shown in Fig.
2(a). The inputs to the cerebellum are head velocity ẋ and
head position x (omitted from the figure for clarity). We
assume that an optimal cerebellar model C∗ exists. The error



(a) Feedforward

(b) Recurrent

Fig. 2. Schematic of feedforward and recurrent architectures

in the cerebellar output is then defined as

eC(x, ẋ) = C∗(x, ẋ) − C(x, ẋ). (8)

The motor command is generated by combining the output
from the brainstem and cerebellum

u = C(x, ẋ) +B(x, ẋ), (9)

where B(x, ẋ) describes the brainstem dynamics. Similarly
for the optimal cerebellum model

u∗ = C∗(x, ẋ) +B(x, ẋ). (10)

Taking the difference between (9) and (10) gives us an
expression for the error in the cerebellar output:

eC = u∗ − u, (11)

that is, eC is equal to the motor error. Rewriting the right
hand side of (11) in terms of the inverse plant model,
exploiting linearity of the plant to combine the two terms
and using r = ẏ∗ − ẏ for the retinal slip, we have

eC = P−1(y, r). (12)

Equation (12) shows that the error in the cerebellar output can
be calculated from the retinal slip via the inverse dynamics
of the plant. We assume that some internal model is available
to compute this, but if the plant dynamics change then we
can no longer be confident that our estimate of the cerebellar
output is accurate.

The required training signal is, however, independent of
the kinematics. This is an important but usually overlooked
advantage of employing a purely feedforward architecture.

So in general we expect learning under the feedforward
architecture to be impaired (converge more slowly) or even
made entirely unstable (not converge at all) following a
change in the dynamics. However, we expect learning to
be unaffected by a change in the kinematics. In Section V,
we verify these theoretical claims with a simulation of a 2
degree-of-freedom oculomotor plant.

B. Recurrent architecture

We wish to derive an expression for the error in the
cerebellar output in terms of the measured retinal slip for
the recurrent architecture (Fig. 2(b)). We assume that the
inputs to the cerebellum are the head position x and the
afferent motor command u, the latter being the defining
characteristic of the recurrent architecture (the head-position
input is omitted in Fig. 2(b) for clarity).

We begin the derivation by noting that the input to the
brainstem model is given by C(x, u) + ẋ, which is equal to
the motor command transformed under the brainstem inverse
model, i.e.,

C(x, u) + ẋ = B−1(x, u). (13)

Again, as in the feedforward case, we assume there exists an
optimal cerebellar model C∗ which yields exactly the desired
motor command u∗. This will obey

C∗(x, u∗) + ẋ = B−1(x, u∗). (14)

Note that since ẋ = K−1(y, ẏ∗) and ẏ∗ = P (y, u∗), we can
expand (14) to obtain an identity in terms of u∗:

B−1(x, u∗) − C∗(x, u∗) = K−1(y, P (y, u∗)) (15)

which we will make use of later. Now, taking the difference
between (13) and (14), we have (by linearity of B−1)

B−1(x, u∗ − u) = (C∗(x, u∗) − C(x, u)) (16)

We can, however, use the linearity of C∗ to re-express
C∗(u∗) = C∗(u)+C∗(eu) (where eu ≡ u∗−u). Substituting
this into (16) and applying (8) gives us an expression for eC

in terms of the motor error eu.

eC(x, u) = B−1(x, eu) − C∗(x, eu). (17)

We can now apply (15) to the right-hand side of (17) and
obtain

eC(x, u) = K−1(y, P (y, eu)) = K−1(y, r). (18)

Equation (18) shows that the error in the cerebellar output
is given by the retinal slip transformed via the inverse
kinematics. This can be thought of as an error in the original
vestibular signal ẋ, given fixed cerebellum and brainstem.

We expect learning under the recurrent architecture to
be impaired under kinematics transformations, but to be
unaffected by dynamics transformations. Again, in Section
V, we verify these theoretical claims with simulations.

This reveals a duality between the feedforward and recur-
rent architectures for the cerebellar pathway. The (in)stability
properties of learning in the feedforward architecture under
dynamics transformations are mirrored by those of learning in
the recurrent architecture under kinematics transformations.

In the case of nonlinear dynamics, a Taylor expansion
argument can be used to show that the critical observation
of learning in the feedforward architecture being independent
of the kinematics and learning in the recurrent architecture
being independent of the dynamics still holds.



Fig. 3. Composite model of VOR/OKR adaptation.

Stability of recurrent loop

A major problem with the recurrent architecture is the
threat of instability in the brainstem-cerebellum loop. In the
case of linear dynamics, the motor command u will grow
exponentially if any of the eigenvalues λ of the matrix BC
has magnitude |λ| > 1, since the associated eigenvector will
increase in magnitude each time it traverses the loop.

It may, however, be possible to avoid entering into unstable
regions of the parameter space by adapting B, using C
as a training signal. This learning transfer from C to B
would steer the loop away from regions of instability by
ensuring that C∗ (which would now depend on B) would
tend asymptotically to 0. Learning transfer of this kind is
supported by physiological evidence [2] and Dean and Porrill
[1] have suggested it may be used as a mechanism to enhance
VOR response at high frequencies.

IV. FEEDBACK-ERROR LEARNING WITH ADAPTIVE OKR

We have seen two alternative models of vestibulo-ocular
reflex adaptation, each of which have distinct shortcomings
which are complimentary to one another. The feedforward
architecture is susceptible to instability under dynamics trans-
formations, whereas the recurrent architecture is susceptible
to instability under kinematics transformations.

Shibata and Schaal [8] implemented a feedback-error-
learning (FEL) model [3] of the VOR. Here, the output of
an existing feedback controller is used as an approximation
to the motor error eu for training the cerebellum. The
optokinetic response (OKR) is a reflex which generates com-
pensatory eye movements in response to retinal slip. Shibata
and Schaal likened this to a conventional feedback controller
and used the output to train the cerebellum according to the
standard feedback-error-learning framework.

However, this framework inherits all the problems of the
feedforward architecture. The feedback controller implicitly
contains a model of the plant dynamics and if these dynamics
change, the feedback controller may no longer generate
suitable suitable motor commands or training signals. One

(a) Dynamics transformation

(b) Kinematics transformation

Fig. 4. Example of dynamic and kinematic transformations. 4(a) illustrates
a viscous dynamics transformation. The original force field (as a function of
eye angular velocity) is plotted on the left, and the transformed viscous curl
field is plotted on the left. 4(b) illustrates the consequences of a rotation of
the visual field by 45◦.

solution to this problem is to independently adapt the OKR
in addition to the VOR.

In Section II, we described how, in the VOR, learning
the kinematic relationship between head velocity and desired
eye velocity is a central component of adaptation. In the
OKR, the analog of head velocity is retinal slip. Unlike head
velocity, however, the relationship between retinal slip and
desired eye velocity is veridical. Kinematics, therefore, do
not play a role in the OKR and adaptation of the OKR can
be described purely in terms of learning the inverse dynamics.
Consequently, the recurrent architecture is ideally suited for
adaptation of the OKR, since, as outlined above, it is robust
against dynamics transformations.

We therefore propose a joint VOR/OKR model based on
feedback-error-learning in which the OKR adapts to dynam-
ics transformations using a recurrent cerebellar architecture
framework. The output of the OKR then also acts as a
training signal for the VOR, which employs the feedforward
architecture just as in Shibata and Schaal’s model [8]. This
full joint adaptive FEL model of the VOR and OKR is
illustrated in Fig. 3.

V. SIMULATION RESULTS

We tested the ability of each of the three proposed VOR
architectures to adapt to a range of changes in the kinematics
and the dynamics. We simulated a 2 degree-of-freedom
oculomotor plant with linear, viscous dynamics given by

u = P−1y. (19)
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Fig. 5. Feedforward architecture performance under a viscous curl field.
Different traces plot the nMSE over time for different angles of viscous
force direction (i.e. different values of θ in (21)).

The task kinematics were given by

ẏ∗ = Kẋ. (20)

The dynamics transformation we employed was to change the
dynamics from an ordinary resistive viscosity field (P−1 =
I) to a viscous curl field (Fig. 4(a)) in which there is an angle
θ between the eye velocity and the force, i.e.

P−1 =
(

cos θ sin(θ)
− sin(θ) cos(θ)

)
. (21)

The kinematics transformation we employed was a rotation
of the visual field (Fig. 4(b)) by angle ψ. In the initial
case, we assume that eye velocity is exactly equal to head
velocity, i.e. ẏ∗ = ẋ (K = I). Following the transformation,
the desired eye velocity is rotated by angle ψ relative to
the head velocity (K = (cosψ, sinψ;− sinψ, cosψ)). The
brainstem controller was optimal for the initial dynamics and
kinematics. An OKR feedback controller was also employed,
which generated appropriate feedback commands given the
initial plant dynamics, with a conservative gain of 0.1

uOKR = 0.1P−1(y, r). (22)

In all experiments, the head position repeatedly traced out
a figure-of-eight, i.e. x(t) = [sin(0.1t), sin(0.2t)]T . All
experiments were run 10 times with different initial positions
around the figure-of-eight and simulation timestep of dt =
0.01s.

Firstly, we tested the performance of the feedforward
architecture in adapting to the visuomotor rotation. Analyzing
the normalised mean-squared velocity error (nMSE) or retinal
slip, we found no significant difference between different
magnitudes of rotation (values of ψ). Fig. 5 plots the average
nMSE over time for θ = 15◦ which is representative of all
values of θ. The error bars represent one standard deviation
above and below the mean.

We then tested the performance of the feedforward ar-
chitecture in adapting to novel dynamics. Fig. 5 plots the
evolution of the nMSE over time for different values of
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Fig. 6. Recurrent architecture performance under visual field rotations of
varying magnitudes (i.e. different values of ψ).
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Fig. 7. Composite architecture performance under dynamics and kinematic
transformations

θ. For θ = 15◦, performance is the same as under the
kinematics transformation. As θ increases, however, the rate
of improvement drops. Error bars are plotted for the θ = 60◦

case to show that this difference is significant (error bars on
other plots are omitted for clarity). At θ = 90◦, the VOR
no longer converges. In this instance, data from a single
representative trial is plotted.

For the recurrent architecture, we first tested the perfor-
mance under the dynamics transformation. For θ < 60◦,
we found no significant difference in performance between
different values of θ. For other values of θ, however, the
recurrent loop tended to become unstable after a period of
initial improvement. Fig. 6 shows the nMSE over time for
θ = 15◦, which was representative of all trials for θ < 60◦.

Also plotted in Fig. 6 are the results for the recurrent
architecture adapting under the kinematics transformation.
Again, for clarity, error bars are only plotted for represen-
tative transformations. For ψ = 15◦, performance is similar
to that under the dynamics transformation. For ψ = 45◦,
however, the adaptation is significantly slower. For ψ ≥ 60◦,
the recurrent loop tended to become unstable. Once the loop
became unstable, the error tended to explode over very few
timesteps and the plots are therefore curtailed at this point.
Before hitting instability of the recurrent loop, the initial rate
of improvement can be seen to diminish with increasing ψ.
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(a) Dynamics transformation: Viscous curl field (θ = 45◦).
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(b) Kinematics transformation: Visual field rotation (ψ = 45◦).

Fig. 8. Comparative control performance of all three architectures under
similar and typical (a) dynamic and (b) kinematic transformations.

Finally, we evaluated the performance of the composite
architecture under the kinematics and dynamics transforma-
tions. Fig. 7 plots the nMSE over time for two kinematics and
dynamics transformations (error bars are omitted for clarity).
In contrast to the other two architectures, changes in the
magnitude of the transformation had a similar effect, whether
kinematic or dynamic. Interestingly, the rate of improvement
actually increased for larger magnitude transformations. This
was due to the gain of the OKR increasing during adaptation
and the effect was greater for more severe transformations.
Effectively, this constituted an increase in the learning rate
for the VOR. The composite architecture also inherited the
problems of instability in the recurrent loop from the recur-
rent architecture and became unstable under the dynamics
transformation for θ ≥ 60◦.

Fig. 8 compares the performance of all three architectures
under both dynamics and kinematics transformations. The
composite architecture outperforms both the feedforward and
recurrent architectures under both kinematic and dynamic
transformations of the plant.

VI. CONCLUSION

We have examined existing control-theoretic models of
VOR adaptation with respect to their stability under dynamics
and kinematic transformations of the task. We found that
the feedforward architecture typically employed in feedback-
error learning is not well-suited to situations where the

dynamics are subject to change, while the alternative re-
current architecture is not suited to situations in which the
kinematics are subject to change. We applied this insight to
propose a new model of VOR adaptation in which, as in
the feedback-error learning model of the VOR, adaptation is
driven by the output of the OKR. In our model, however, the
OKR itself is adaptive, employing the recurrent cerebellar
architecture to ensure robustness against changes in plant
dynamics while exploiting the fact that the OKR is not
susceptible to kinematic variability. The overall composite
system, therefore, has the potential to learn stably under
both kinematic/dynamic transformations. To our knowledge,
no other previously published model of VOR adaptation can
claim robustness in this way.

The threat of instability of the recurrent loop is a major
issue with the recurrent architecture. It may, however, be
possible to avoid this through a combination of constraining
the magnitude of the control signals and/or the cerebellar
output and transfer of learning from the cerebellum to the
brainstem. If the recurrent loop can be stabilized in this way,
then the learning in the composite architecture should be
stable across all conditions in which either on of the forward
or recurrent architecture can learn stably in isolation. Finally,
we chose to simulate a simple linear, viscous plant here to
highlight the fact even in this simplest of cases, the distinction
between kinematics and dynamics transformations is a crucial
one. It should, however, be possible to extend these results
to higher-order and non-linear plants.
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