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Abstract— Classic adaptive control methods for handling
varying loads rely on an analytically derived model of the
robot’s dynamics. However, in many situations, it is not feasible
or easy to obtain an accurate analytic model of the robot’s
dynamics. An alternative to analytically deriving the dynamics
is learning the dynamics from movement data. This paper
describes a load estimation technique that uses the learned
instead of analytically derived dynamics. We study examples
where the various inertial parameters of the load are estimated
from the learned models, their effectiveness in control is
evaluated along with their robustness in light of imperfect,
intermediate dynamic models.

I. INTRODUCTION

Adaptive control for the problem of manipulation of
unknown loads is a mature area that has given rise to
theoretically well established and effective techniques [10]
[11] [1]. Existing methods rely on an analytically derived
model of dynamics. In many cases though, exact analytical
derivation of the robot dynamics is not feasible. For example,
there may be hard to model joint elasticity and friction or
there may be uncertainties in the physical parameters of
the robot. When an accurate dynamics model is difficult
to derive, an attractive alternative is to learn the dynamics
model using movement data [2]. Unfortunately though, a
learned dynamic model cannot be directly used for load
identification as it does not have an appropriate form for
load estimation.

In this paper, we show howa set of learned models
can be used to estimate the dynamics model in the form
required for load identification. First, we show how this can
be achieved from a set of learned models corresponding to
manipulation of loads withknown inertial parameters. We
also show that the load estimates and the inferred model can
be used for control. We, then, extend this to the case that
learned models do not come labelled with inertial parameters.
In that case, the estimated parameters of the load are a linear
transformation of the actual ones but can be used for control.
Furthermore, the issue of identifiability of parameters is
addressed. The contribution of this work is that it shows how
a robot cangeneralizethe knowledge obtained fromlearning
to manipulate a set of loads to other loads.

The rest of the paper is organised as follows. In Section II,
we review the main methods in load estimation. In Section III
we discuss learning the dynamics of a robot that manipulates
a stationary load and using the learned dynamics for control.
In Section IV, we see how from a set of learned models with
known inertial parameters we can obtain the dynamics model
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in the form that is required for load estimation and show that
accurate load estimation and control can be achieved using
this method. In Section V, we extend this to the case that
learned dynamics are not labelled with inertial parametersof
the different loads.

II. LOAD ESTIMATION

There are two main classes of load estimation methods.
One requires torque sensing at all joints of the robot [7] [11],
while the other requires force and torque sensing only at the
wrist of the manipulator [1] [8]. Both classes of methods,
are based on a linear relationship of the inertial parameters
of the load and links to the dynamics of the robot.

We will first discuss the case where torque sensing in
all joints is used. This approach treats the problem of load
identification as a special case of link parameter estimation.
The fundamental relationship that is exploited is [9]:

τ = Y (q, q̇, q̈)π, (1)

whereτ is the vector of torques applied at the joints,q, q̇ and
q̈ are the joint angles,velocities and accelerations respectively
andπ is the vector of inertial parameters of all the links of
the robot:

π = [m1,m1l1x,m1l1y,m1l1z, I1xx...mn,mnlnx...Inzz ]
T

(2)
Here,mi is the mass of linki, li is the position vector of the
center of mass of the link in the attached reference frame and
Ii is the inertia tensor of the link measured around the origin
of the link’s reference frame. Given that the inertia tensoris
a symmetric3 × 3 matrix, this sums up to a total of 10
inertial parameters per link. Thus, withn links, π is a 10n-
dimensional vector. Y is called the regressor matrix and is in
general a complicated function of kinematic parameters such
as link lengths and joint orientations. Its dimensionalityis
n×10n. It is presumed that it can be accurately computed an-
alytically. The full dynamic parameter identification problem
entails inferringπ. The scenario for load identification is a bit
simpler though. If the load is assumed to be rigidly attached
to the last link of the robot, manipulating different loads
affects the dynamics only in changing the inertial parameters
of the last link of the arm:mn, ln andIn. Load estimation
is then estimating the inertial parameters of the compound
last link / load. Assuming that the inertial parameters of the
first n− 1 links are known and only the inertial parameters
of the link n are unknown, the model of eq. (1) becomes:

τ = c(q, q̇, q̈) + Yn(q, q̇, q̈)πn (3)

where the constant and known inertial parameters of the first
n − 1 links have been premultiplied by the respective first
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(n− 1)× 10 columns of Y to give the vectorc. Yn consists
of the last 10 columns of the matrixY andπn is the vector
consisting of the inertial parameters of the compound last
link / load only. Alternatively, this can be written as:

τ = Ỹ (q, q̇, q̈)π̃n (4)

Here, Ỹ is the matrix[c Yn] and π̃n is the vector[1 πT
n ]T .

A sequence of measured torquesτ1, τ2...τT , joint angles
q1, q2...qt, velocitiesq̇1, q̇2...q̇t and accelerations̈q1, q̈2...q̈t

is collected and a sequence ofc1, c2...ct andY 1
n , Y

2
n ...Y

t
n is

analytically computed. From these, the following equationis
formed:
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or more compactly:

τ̄ = c̄+ Ȳnπn (6)

At this point any linear estimation technique can be used to
estimateπn. The simplest scenario is to assume stationarity
of πn and do simple least squares estimation ofπn:

π̂n = (Ȳ T
n Ȳn)−1Ȳ T

n (τ̄ − c̄) (7)

Another option is to assume non-stationarity of the load, and
do recursive least squares estimation with a forgetting factor.

The other approach to load estimation uses a similar
relationship to eq. (1) which relates the torque and force
applied by the load to the last link of the robot. This has a
linear relationship toπn+1, wheren+1 denotes the load only.
A force / torque sensor at the wrist of the robot (between
the last link and load) provides a set of measurements and
a set of new regressor matrices (we improperly use the term
regressor for this case as well due to lack of terminology) is
computed and a least squares problem is solved to estimate
πn+1. In our discussion, we will focus on the first class of
methods, because the model required for load estimation can
be used for control as well. However, our arguments will be
valid for the wrist force / torque sensor scenario as well and
the relevance will be discussed.

A. Identifiability

There is an important issue in the described procedure that
wasn’t discussed. In general not all inertial parameters can
be identified. There are two reasons for that. The first is that
some parameters do not contribute at all in the dynamics.
For example, consider a single link robot that revolves only
around they axis, then the moments of inertia around the
x and z axes do not contribute at all in the dynamics and
the corresponding columns of̄Y are 0. The second reason is
that due to the structure of the manipulator, some columns of
Ȳ are linearly dependent. In general, the inertial parameters
can be grouped in three categories:

• Identifiable parameters, that correspond to linearly in-
dependent columns of̄Y .

• Partially identifiable parameters, that correspond to lin-
early dependent columns of̄Y .

• Unidentifiable parameters, that do not contribute at all
in the dynamics and the corresponding columns ofȲ

are zero.
Existence of partially identifiable and unidentifiable pa-

rameters means that̄Y is not full rank and thus the least
squares problem cannot be solved. A solution is to do
ridge regression instead of least squares estimation. The
accuracy of the estimates of identifiable parameters will
depend on the selection of the penalty termλ, whereas
non-identifiable parameters’ estimates will be significantly
wrong. A better solution is to remove the columns ofȲ
corresponding to unidentifiable parameters and replace the
columns corresponding to partially identifiable parameters
by a proper linear combination. There has been some work
on either symbolically [6] [5] or numerically [3] [4] char-
acterizing the identifiability of inertial parameters. Themost
popular numerical approach involves doing Singular Value
Decomposition on thēY matrix, for more details please see
[4].

Classification of the inertial parameters of each link de-
pends on the structure of the manipulator. However, some
parameters may appear to be unidentifiable for specific
movements of the manipulator although they aren’t for
others. For this purpose, a sufficiently rich movement has
to be generated and there has been some work on finding
rich movements.

In what follows, we will not focus on identifiability issues
and generation of rich movements. We will assume that we
know to which class each of the inertial parameters of the
compound last link / load belongs. However, we will suggest
some ways that the problem of identifiability could be dealt
with using a set of learned models.

III. LEARNING DYNAMICS

The load estimation methods discussed presume that it
is possible to compute the matrix that multiplies the inertial
parameters vector analytically. However, this matrix may not
be easy to derive, or there may be significant uncertainties
in the parameters that it depends on.

An alternative to analytically deriving the dynamics model
is to learn it. In this section we will discuss learning a
dynamics model of the arm with a stationary load. In order to
learn the dynamics model, a non-linear regression algorithm
and movement data are needed. Movement data can be
collected by controlling the arm with a non-model based
controller, say a pure PID controller.

The form of the dynamics model that is learned is the
inverse dynamics model, which maps joint angles, velocities
and accelerations to torques that are required to achieve this
acceleration from that set of joint angles and velocities:

τ = g(q, q̇, q̈) (8)

The inverse model can be used for control and as we will see
can also be used for load estimation if we take the approach
of torque sensing in all joints. If on the other hand, the



wrist force / torque sensor approach is applied, then both
an inverse model (for control) and a wrist sensor model (for
load estimation) have to be learned.

A. Locally Weighted Projection Regression

An algorithm that has been shown to be robust in motor
learning tasks is Locally Weighted Projection Regression
(LWPR) [12] [13]. An LWPR model consists of a set of local
linear models that come paired with a kernel that defines the
area of validity of the local model. For a given inputx, the
kernel of thek-th local model determines a weightingwk(x)
while the local linear model predicts an outputψk(x). The
combined prediction of LWPR is

φ(x) =
1

W

∑

k

wk(x)ψk(x),W =
∑

k

wk(x) (9)

Each locality kernelwk(x) has a parametric Gaussian form
and the shape of the kernel is adapted during learning in a
data driven manner. The local models are trained using an
online variant of Partial Least Squares using a set of collected
sufficient statistics. LWPR is incremental and non-parametric
in the sense that new local models are added online on an
as-needed basis when training proceeds and new areas of
the input domain are explored. Furthermore, LWPR provides
statistically sound confidence bounds. For more details on
LWPR please see [13].

B. Using a dynamics model for control

An inverse model can be used in many control settings.
However, we will use it as part of a composite controller.
Given a desired trajectory in joint angle spaceq∗1 , q

∗

2 ...q
∗

T ,
the corresponding desired velocitiesq̇∗1 , q̇

∗

2 ...q̇
∗

T , accelerations
q̈∗1 , q̈

∗

2 ...q̈
∗

T and the current joint angle at timet, the composite
control command at timet is:

τt = g(q∗t , q̇
∗

t , q̈
∗

t ) + P (q∗t − qt) +D(q̇∗t − q̇t) (10)

This consists of a feedforward command given by the inverse
model and a feedback command provided by a Proportional
Derivative (PD) controller. A schematic of the composite
controller can be seen in Fig. 1. If an accurate inverse model
is used, the composite controller can achieve compliant, fast
and accurate movement. One effect of the composite control
approach is that the more accurate the inverse modelg, the
smaller are the errors and the error-correcting PD signals.
Thus, the total amount of feedback control is a measure of
the accuracy of the inverse predictive model.

C. Learning and control experiments

The ability of LWPR to learn non-linear dynamics that
can be used for control was verified. A simulated1 3 DoF
arm was used (see Fig. 2). The first joint allows up and
down movements and the next two allow left and right
movements. The task of the arm was to follow a smooth
trajectory planned in joint angle space. The trajectory was
a superposition of different phase-shifted sinusoidal trajecto-
ries for each joint. Twenty iterations of the trajectory were

1Simulations performed using ODE and OpenGL
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Fig. 1. The composite controller

executed. The arm was controlled by a PD controller in the
first 3 iterations of the trajectory and then switched to a
composite controller using the model being learned. Half of
the observed data was used for training the model and half
for testing and estimating the accuracy of the learned model.
As discussed, the accuracy of the inverse model can also be
judged by the amount of error-correcting feedback generated
by the feedback part of the controller. If the inverse model
is accurate then the feedback component of the composite
controller will be small. Learning was repeated for the same
task six times, while manipulating six different loads. The
loads were selected in such a way that the learned dynamics
can be used in our later experiments (see Section IV).

Results, averaged over the six trials can be seen in Fig. 3.

Fig. 2. Simulated 3DOF arm

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration

nM
S

E
 (

to
rq

ue
)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration	

R
at

io
 o

f f
ee

db
ac

k 
to

 c
om

po
si

te
 c

om
m

an
d

Joints 1, 2, 3 
Averaged 

Joints 1, 2, 3 

Averaged 

Fig. 3. Learning performance of LWPR over 6 different loads and
20 iterations. Left: normalized MSE on the test data. Right:average
contribution of the error-correcting feedback PD control.

On the left we can see that the normalized MSE (nMSE)
drops as the iterations proceed, reaching a very low value



after only a few learning iterations. On the right we can
see the ratio of the feedback to the composite command as
training proceeds (we switch to composite control at the third
iteration). A very low value is obtained, indicating that the
learned models are quite accurate. Error bars are obtained
by averaging between the six trials.

IV. LOAD ESTIMATION WITH LEARNED
DYNAMICS MODELS

The models learned with any learning algorithm cannot
be directly used for a load estimation task, since they do
not provide the regressor matrix that is needed (we use
the term regressor, although strictly it should only be used
for the original Y matrix). An option is to use a set of
learned dynamics,g1, g2 ... gm corresponding to models
with referenceloads with known inertial parameters̃π1

n, π̃2
n

... π̃m
n . Since the regressor matrix̃Y is the shared between

different models, we can use eq. (4) to obtain:
[

g1g2...gm
]

= Ỹ
[

π̃1
nπ̃

2
n...π̃

m
n

]

(11)

or more compactly:

G = Ỹ Π̃ (12)

Then, we can again solve a least squares problem to obtain
an estimate of̃Y like:

Ỹ = GΠ̃T (Π̃Π̃T )−1 (13)

In an ideal scenario, with perfectly learned inverse models,
we can use 11 models corresponding to manipulation of ob-
jects with linearly independent inertial parameters to obtain
a good estimate of̃Y . More realistically though, since it is
unlikely that the learned models are perfect, more accurate
results can be expected while using morereferencemodels.
Having estimates of̃Y , we can do parameter estimation
for novel loads using the method that we prefer (e.g. least
squares). Subsequently, we can use the estimatedỸ and
the inferred estimates of the inertial parameter for control
purposes. Substituting the learned modelg with eq. 3, and
using the estimated̃πn, instead of the actualπn, the control
law of eq. (10) becomes:

τt = c(q∗t , q̇
∗

t , q̈
∗

t )+Yn(q∗t , q̇
∗

t , q̈
∗

t )π̂n+P (q∗t −qt)+D(q̇∗t −q̇t)
(14)

Furthermore,Ỹ could be used with a numerical procedure
like SVD for classifying the identifiability of the inertial
parameters of the last link / load.

The above discussion considered the use of torque sensing
at all joints. If the wrist force / torque sensor method is used,
then one could still learn a model that maps from joint angles,
velocities and accelerations to forces and torques measured
at the wrist. Given a sufficient number of learned models,
the regressor matrix can again be estimated and be used for
load estimation. However, for control purposes, the inverse
model of the robot will also have to be learned and another
regressor matrix will have to be estimated.

A. Experiments

The six models learned in the previous section were
used to obtain the regressor matrix and for performing load
estimation and control under changing loads. Varying loads
were randomly chosen with the constraint that out of the
ten inertial parameters of the last link / load, only five were
not zero. This was achieved by constraining both the center
of mass of the link and the load to lie on they axis of
the link’s reference frame (see Fig. 4) such thatmnlnx and
mnlnz are zero. Furthermore, the off-diagonal elements of
the inertia tensor are zero. Out of the five non-zero inertial
parameters, three were identifiable and inferred:mn (mass),
mnlny (product of mass and the y-position of center of mass)
andInxx (moment of inertia around the x axis).

Fig. 4. In our experiments, both the center of mass of the lastlink ln and
the loadlo are constrained to lie on they axis of the last link’s reference
frame, so that the center of mass of their unionĺn also lies on they axis.

We ran the simulation for 50 different trials (with random
loads) and tried to estimate the inertial parameters of the
compound last link / load. At the same time, the estimates
were used for applying control as in eq.(14). The nMSE of
the load parameter estimates, the average ratio of feedback
to composite command and the tracking error averaged over
the 50 trials (incl. std.dev.), can be seen in Table I.

mn mnlny Inxx

nMSE 0.0006±0.0024 0.0010±0.0037 0.3278±1.0031
Joint 1 Joint 2 Joint 3

Ratio 0.0016±0.0009 0.101±0.0469 0.1095±0.05
Joint 1 Joint 2 Joint 3

Tr.err. 0.000009±0.000009 0.00036±0.00035 0.000209±0.00019

TABLE I

ACCURACY OF LOAD ESTIMATION, RATIO OF FEEDBACK TO COMPOSITE

COMMAND AND TRACKING ERROR

The accuracy of the estimates ofmn andmnlny is very
high, whereasInxx is less accurately estimated. The ratio of
feedback to composite command as well as the tracking error
is as low as in the case where a single learned model of the
arm dynamics with a single load was used for control (cf.
Fig. 3, verifying that the estimated parameters are accurate
enough for control purposes.



The same task was repeated for the case of randomly
changing,non-stationary loads. This is a more difficult
scenario to handle than the one with stationary loads, since
there may be large errors during switches between loads,
especially when using the estimated parameters for com-
posite control. The bottom part of Fig. 5 shows a typical
behavior for the non-stationary mass estimation. The top half
plots the corresponding feedback and feedforward commands
using the estimated parameters, nicely showing that, with
the exception of the spikes at the transition, the feedback
command constantly stays close to zero. Statistics for the
accuracy of the estimates, contribution of feedback command
and tracking error averaged over the multiple trials are
given in Table II. The accuracy of the estimates is lower
than in the case of stationary loads, since our estimates
are inevitably inaccurate for some short period after the
transition. However, they are still quite accurate as indicated
by the low feedback to composite command ratios.
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Fig. 5. Load estimation and control of non-stationary loads. Top: contri-
bution of feedforward and feedback command. Bottom: real and estimated
mass.

mn mnlny Inxx

nMSE 0.0701±0.3871 0.1568±0.3980 1.1963±2.4451
Joint 1 Joint 2 Joint 3

Ratio 0.0066±0.0065 0.1343±0.0693 0.1643±0.0824
Joint 1 Joint 2 Joint 3

Tr.err. 0.000033±0.000034 0.00049±0.00044 0.00033±0.00036

TABLE II

LOAD ESTIMATION AND CONTROL IN A NON-STATIONARY LOAD TASK .

Furthermore, the effect of using poorly learned dynamic
models was investigated. The same load estimation and
control task with 50 random stationary loads was executed
using reference learned dynamics models with nMSE of
around 0.05 as well as around 0.2, significantly higher than
the average nMSE of 0.001 used in the previous experiments.
This effect was produced by training the models with less
data.
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Fig. 6. Effect of imperfect dynamic models

Fig. 6 shows the results of the experiment and as expected,
load estimation is less accurate as the accuracy of the learned
models decreases. Also, the ratio of feedback to compos-
ite command becomes higher. However, there is graceful
degradation of the performance, providing hope that such
estimation techniques maybe be used to bootstrap learning,
control and parameter identification in an online, incremental
setting.

V. NOT USING LABELED DYNAMICS

Previous evaluations and experiments relied on the fact
that adequate number of reference learned dynamic models
with known inertial parameters exists. In many cases, an
accurate estimate of the parameters, even for reference loads
may not be forthcoming. Can we avoid using the real inertial
parameters altogether? Consider introducing a linear trans-
formationA and it’s inverse between the regressor matrix
and the set of inertial parameters in eq.(4) like:

τ = Ỹ (q, q̇, q̈)A−1Aπ̃n (15)

Then eq. (12) becomes:

G = Ỹ A−1AΠ̃ (16)

and we can group the terms as:

G = (Ỹ A−1)(AΠ̃) (17)

In the case that we inferl inertial parameters, if we havem =
l+ 1 learned dynamic models and the vectors of the inertial
parameters for the different loads of the learned models are
linearly independent, then one can setAΠ̃ arbitrarily, to any
full rank matrix. Hence, instead of estimating̃Y , one can
estimateỸ A−1 as:

Ỹ A−1 = GΠ̃TAT (AΠ̃Π̃TAT )−1 (18)

This estimate can be used for estimating the currentAπn

which can be used with̃Y A−1 for control. In this setup,
the estimated load is not an estimate of the actual load



but an estimate of a linear transformation of the load.
However, when multiplied by the automatically appropriately
transformed regressor matrix, it gives the right model of
dynamics for the current load. In the case that there are more
modelsm than inertial parameters, we cannot initialize the
AΠ̃ matrix arbitrarily since there may be no exact mapping
A from the actual parameters̃Π to the arbitrarily set matrix.
Improper setting ofAΠ̃ would destroy the least squares
solution. A solution would be to keepl base models and infer
the inertial parameters for the restm− l inertial parameters
and put them together with the arbitrarily setn parameters
in the matrixAΠ. However, since these estimates will not
be accurate and since they will in turn be used to estimate
another quantity,̃Y A−1, it does not make much sense to use
more thatl + 1 models.

A. Experiments

The described procedure was empirically evaluated with
the same task as in the case that we knew the inertial
parameters of the load / last link of the arm. However,
the accuracy of our estimates cannot be judged by com-
paring them directly with the correct values. Instead, we
used the estimates for control and accumulated statistics
on the contribution of the feedback command. This gives
a measure about how accurate the feedforward command
is and consequently how accurate the load estimates are.
Again, we tried to infer three inertial parameters. The matrix
AΠ̃n was initialized as an upper triangular matrix, with all
elements above the diagonal set to 1. The ratio of feedback
to composite command and tracking error averaged over the
50 trials for the three different joints can be seen in Table III.
The performance is similar to the case that labeled models
are used, as in Table I.

Joint 1 Joint 2 Joint 3
Ratio 0.0016±0.0014 0.0971±0.0342 0.1216±0.0505

Joint 1 Joint 2 Joint 3
Tr.err. 0.00001±0.00001 0.00032±0.00026 0.00022±0.00021

TABLE III

LOAD ESTIMATION AND CONTROL WITHOUT LABELED LEARNED

MODELS.

VI. DISCUSSION

We have shown that it is possible to do load estimation
without using an analytically derived model. Experiments
illustrate that using a set of learned models labelled with
the appropriate inertial parameters (only of the load or of
the load and last link of the arm) it is possible to do
accurate load estimation and use the derived model and load
estimates for control purposes. We have also shown that if the
inertial parameters are not available, a linear transformation
of the actual inertial parameters can be estimated and that
this estimate can be used for control purposes. This nicely
achievesgeneralizingthe knowledge obtained fromlearning
to manipulate a set of loads to manipulating other loads,
without using any prior knowledge about the dynamics or

the loads. Most importantly, there seems to be a graceful
degradation of the performance of the load estimates and
the control performance in relation to the inaccuracies of the
learned dynamic models.

An interesting extension would be to do automatic clas-
sification of the identifiability of the inertial parametersof
the load or last link. Since a learned set of models with
their respective inertial parameters can give an estimate of
the actual regressor matrix, a sequence of estimates can
be used with a numerical algorithm like SVD to achieve
this. However, although in the case that analytically derived
dynamics are used, the zero singular values can be directly
incorporated using the methods described in [4], in the
case that learned dynamics are used, the regressor matrix
will almost always not be singular (due to approximation
inaccuracies). In the case that the labels are not known and
the matrixỸ A−1 is inferred, SVD cannot be used anymore
to determine the number of identifiable inertial parameters
since the unknown linear transformationA−1 changes the
singular values of̃Y . A possibility in that case would be to
do an incremental search, adding one model and one variable
at a time until performance decreases.
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