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Load estimation and control using learned dynamics models

Georgios Petkos and Sethu Vijayakumar

Abstract— Classic adaptive control methods for handling in the form that is required for load estimation and show that
varying loads rely on an analytically derived model of the accurate load estimation and control can be achieved using
robot's dynamics. However, in many situations, it is not feaible this method. In Section V. we extend this to the case that

or easy to obtain an accurate analytic model of the robot's | dd . t labelled with inertial a6
dynamics. An alternative to analytically deriving the dynamics earned dynamics are not labelied with inertial parameners

is learning the dynamics from movement data. This paper the different loads.

describes a load estimation technique that uses the learned

instead of analytically derived dynamics. We study exampk Il. LOAD ESTIMATION
where the various inertial parameters of the load are estimeed There are two main classes of load estimation methods.

from the learned _model_s, their effecti_ven_ess in _control IS One requires torque sensing at all joints of the robot [7],[11

evaluated along with their robustness in light of imperfect  \yphile the other requires force and torque sensing only at the
intermediate dynamic models. . .

wrist of the manipulator [1] [8]. Both classes of methods,

I. INTRODUCTION are based on a I_inear relationship _of the inertial pararseter

) _ ] of the load and links to the dynamics of the robot.

Adaptive control for the problem of manipulation of \we will first discuss the case where torque sensing in
unknown loads is a mature area that has given rise | joints is used. This approach treats the problem of load

theoretically well established and effective techniquig] [ jgentification as a special case of link parameter estimatio

[11] [1]. Existing methods rely on an analytically derivedThe fundamental relationship that is exploited is [9]:
model of dynamics. In many cases though, exact analytical

derivation of the robot dynamics is not feasible. For exanpl T=Y(q,¢ 4, 1)

there may be hard to model joint elasticity and friction ofwherer is the vector of torques applied at the joinisg and
there may be uncertainties in the physical parameters gfare the joint angles,velocities and accelerations resmégt

the robot. When an accurate dynamics model is difficulind r is the vector of inertial parameters of all the links of
to derive, an attractive alternative is to learn the dynamiche robot:

model using movement data [2]. Unfortunately though, a T
learned dynamic model cannot be directly used for load™ = [y, malie, maliy, mali, Dag oo Mol o Insz]

identification as it does not have an appropriate form for . . . (@)
load estimation. Here,m; is the mass of link, /; is the position vector of the

In this paper, we show hova set of learned models center of mass of the link in the attached reference frame and
can be used to, estimate the dynamics model in the forfs is the inertia tensor of the link measured around the origin

required for load identification. First, we show how this car? the Imk’s_ reference frgmeHleen that the inertia lter:sig
be achieved from a set of learned models corresponding ?osy.mlmetrlc?) x 3 matr||_x,kt _I'_Sr’] sums_mulp Iio a Fota 0
manipulation of loads wittknown inertial parameters. We Inertia paralmeters ;:(e_r n I.I q l’r']s’ WITINKS, 7 1S & 10nd-]_ .
also show that the load estimates and the inferred model Cgﬁnensmna vec_tor. IS calle the regressor matrix anais |
be used for control. We. then. extend this to the case thggneral a complicated function of kinematic parametert suc
learned models do not come labelled with inertial paransseter"’IS ynk Ilengths and J(;Jll;]t o_nenta’gons. Its d|r|nenS|onalﬂé/

In that case, the estimated parameters of the load are a lin O”” t_'rshpr?slllque t f”lt It can be ac;(cj:ura_t]? y cpmp;ﬂ; an-
transformation of the actual ones but can be used for contrét yt'(_:a Y. The Tull dynamic pa_lrameter ! _entl |_c_at|qn pteln
Furthermore, the issue of identifiability of parameters i?_nta'ls inferringr. The scenario forload |dent|f|c_:a_t|on Is a bit
addressed. The contribution of this work is that it shows hoﬁ'mpIer though. If the load is ass“”f'ed t(.) be r_|g|dly attached
a robot cargeneralizethe knowledge obtained frotearning to the last link of the robot, manipulating different loads
to manipulate a set of loads to other loads affects the dynamics only in changing the inertial paramsete

The rest of the paper is organised as follows. In Section IP,f the last link of the armm,,, I, and/,,. Load estimation

we review the main methods in load estimation. In Section I then estimating the inertial parameters of the compound

we discuss learning the dynamics of a robot that manipulat st link / Iqad. Assuming that the |nert|a_l par_ameters @ th
rst n — 1 links are known and only the inertial parameters

a stationary load and using the learned dynamics for cantr | . )
In Section 1V, we see how from a set of learned models witi‘?f the link » are unknown, the model of eq. (1) becomes:
known inertial parameters we can obtain the dynamics model T=1c(q,4,9) + Yulq, ¢, 4)mn 3)
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(n—1) x 10 columns of Y to give the vectar. Y,, consists « Partially identifiable parameters, that correspond to lin-

of the last 10 columns of the matriX andr,, is the vector early dependent columns of.
consisting of the inertial parameters of the compound last « Unidentifiable parameters, that do not contribute at all
link / load only. Alternatively, this can be written as: in the dynamics and the corresponding columnsyof
. are zero.
T =Y(q,4,G)n (4)

Existence of partially identifiable and unidentifiable pa-
Here,Y is the matrix[c Y,,] and 7, is the vector[l =1]7. rameters means that is not full rank and thus the least

A sequence of measured torque's 72...77, joint angles squares problem cannot be solved. A solution is to do
¢, ¢%...¢", velocitiesg!, ¢2...4* and accelerationg!, 2...j*  ridge regression instead of least squares estimation. The
is collected and a sequencedf ¢2...c! andY;!,Y2...Y}! is accuracy of the estimates of identifiable parameters will

analytically computed. From these, the following equation depend on the selection of the penalty tesmn whereas

formed: non-identifiable parameters’ estimates will be signifibant
Tl ct Y} wrong. A better solution is to remove the columns Xf
72 c? Y? corresponding to unidentifiable parameters and replace the
: = S|t : Tn () columns corresponding to partially identifiable parameter
T't c.t Y.t by a proper linear combination. There has been some work
" on either symbolically [6] [5] or numerically [3] [4] char-
or more compactly: acterizing the identifiability of inertial parameters. Thest

popular numerical approach involves doing Singular Value
Decomposition on th&” matrix, for more details please see

At this point any linear estimation technique can be used 41 o ) ] ]
estimater,,. The simplest scenario is to assume stationarity Classification of the inertial parameters of each link de-

F=c¢+Y,m, (6)

of 7, and do simple least squares estimationtgf pends on the structure of the manipulator. However, some
o ~ parameters may appear to be unidentifiable for specific
7 = (V1Y) YY1 (7 —¢) (7)  movements of the manipulator although they aren't for

L . _ others. For this purpose, a sufficiently rich movement has
Another option is to assume non-stationarity of the load,, ang pe generated and there has been some work on finding

do recursive least squares estimation with a forgettingpfac fich movements

The other approach to load estimation uses a similar |, ¢ follows, we will not focus on identifiability issues
relat!onshlp to eq. (1) which rglates the torque a_nd forcSnd generation of rich movements. We will assume that we
?pplled lby_ thehlpad to the rl]ast link c()jf the rObhOI'ITh('jS h:|;1s %now to which class each of the inertial parameters of the
Inear relationship tar,, 1, wheren+1 denotes the load only. compound last link / load belongs. However, we will suggest

A force /. torque sensor at .the wrist of the robot (betweeg me ways that the problem of identifiability could be dealt
the last link and load) provides a set of measurements a th using a set of learned models

a set of new regressor matrices (we improperly use the term
regressor for this case as well due to lack of terminology) is 1. LEARNING DYNAMICS

computed and a least squares problem is solved to estimaterhe |oad estimation methods discussed presume that it
mp41. 1IN our discussion, we will focus on the first class ofis possible to compute the matrix that multiplies the irsrti
methods, because the model required for load estimation Cgarameters vector ana|ytica||y_ However, this matrix may n
be used for control as well. However, our arguments will b@e easy to derive, or there may be significant uncertainties
valid for the wrist force / torque sensor scenario as well angh the parameters that it depends on.
the relevance will be discussed. An alternative to analytically deriving the dynamics model
A. Identifiability is to Igarn it. In this sectiorj we wi_II discuss learning a
' dynamics model of the arm with a stationary load. In order to
There is an important issue in the described procedure thiglarn the dynamics model, a non-linear regression algurith
wasn't discussed. In general not all inertial parameters caand movement data are needed. Movement data can be
be identified. There are two reasons for that. The first is thabllected by controlling the arm with a non-model based
some parameters do not contribute at all in the dynamicgontroller, say a pure PID controller.
For example, consider a single link robot that revolves only The form of the dynamics model that is learned is the
around they axis, then the moments of inertia around thénverse dynamics model, which maps joint angles, velazitie
r and z axes do not contribute at all in the dynamics ancnd accelerations to torques that are required to achiése th

the corresponding columns &f are 0. The second reason isacceleration from that set of joint angles and velocities:
that due to the structure of the manipulator, some columns of o
Y are linearly dependent. In general, the inertial pararseter 7 =9(4,4,9) C)

can be grouped in three categories: The inverse model can be used for control and as we will see

- Identifiable parameters, that correspond to linearly inean also be used for load estimation if we take the approach
dependent columns df. of torque sensing in all joints. If on the other hand, the



. . : Feedforward
wrist force / torque sensor approach is applied, then both | Inverse command

an inverse model (for control) and a wrist sensor model (for model
load estimation) have to be learned.

Desired Feedbacl((j AC:uatl
A. Locally Weighted Projection Regression outest O—>+ Controlled o
An algorithm that has been shown to be robust in motor - object
learning tasks is Locally Weighted Projection Regression
(LWPR) [12] [13]. An LWPR model consists of a set of local Delay |-

linear models that come paired with a kernel that defines the
area of validity of the local model. For a given input the Fig. 1. The composite controller
kernel of thek-th local model determines a weighting, (z)
while the local linear model predicts an outpiit(z). The

combined prediction of LWPR is executed. The arm was controlled by a PD controller in the

first 3 iterations of the trajectory and then switched to a

P(z) = S Zwk () (2), W = Zwk(x) (9) composite controller using the model being learned. Half of
w & & the observed data was used for training the model and half

Each locality kernelu, () has a parametric Gaussian formfor testing and estimating the accuracy of the learned model

and the shape of the kernel is adapted during learning in{AaS discussed, the accuracy of the inverse model can also be

data driven manner. The local models are trained using a#d9ed by the amount of error-correcting feedback generate

online variant of Partial Least Squares using a set of citec PY the feedback part of the controller. If the inverse model
sufficient statistics. LWPR is incremental and non-paraimet 'S accurate then the feedback component of the composite

in the sense that new local models are added online on §ANtroller will be small. Learning was repeated for the same
as-needed basis when training proceeds and new areasi@i< Si times, while manipulating six different loads. The
the input domain are explored. Furthermore, LWPR provide92ds were selected in such a way that the learned dynamics

statistically sound confidence bounds. For more details dfn P€ used in our later experiments (see Section IV).
LWPR please see [13]. Results, averaged over the six trials can be seen in Fig. 3.

B. Using a dynamics model for control

An inverse model can be used in many control settings.
However, we will use it as part of a composite controller. |
Given a desired trajectory in joint angle spagg ¢5...¢;, O
the corresponding desired velocitigs ¢; ...¢}., accelerations <
41, ds-..g and the current joint angle at tintethe composite
control command at time is:

r=g(al 6@ + P(] —a) + D@ —d)  (10)

This consists of a feedforward command given by the invers
model and a feedback command provided by a Proportion;
Derivative (PD) controller. A schematic of the composite 1’
controller can be seen in Fig. 1. If an accurate inverse mod:
is used, the composite controller can achieve compliast, fa
and accurate movement. One effect of the composite contréﬂf“
approach is that the more accurate the inverse mgdtie
smaller are the errors and the error-correcting PD signal<
Thus, the total amount of feedback control is a measure (¢
the accuracy of the inverse predictive model.

Fig. 2. Simulated 3DOF arm
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C. Learning and control experiments 107} 02l
The ability of LWPR to learn non-linear dynamics that ol
can be used for control was verified. A simulate@ DoF '
arm was used (see Fig. 2). The first joint allows up ancw”; % o P P r——
down movements and the next two allow left and right teration leration

mo_vements' The tfaSk_ (_Jf the arm was to fOHOV\_/ a SmOOtE‘ig. 3. Learning performance of LWPR over 6 different loadsd a
trajectory planned in joint angle space. The trajectory was iterations. Left: normalized MSE on the test data. Righterage
a superposition of different phase-shifted sinusoidaétta-  contribution of the error-correcting feedback PD control.

ries for each joint. Twenty iterations of the trajectory wer )
On the left we can see that the normalized MSE (nMSE)

1Simulations performed using ODE and OpenGL drops as the iterations proceed, reaching a very low value



after only a few learning iterations. On the right we carA. Experiments
see the ratio of the feedback to the composite command a

training proceeds (we switch to composite control at thedthi . . .
gp ( P used to obtain the regressor matrix and for performing load

iteration). A very low value is obtained, indicating thakth o : :
. : eatlmatlon and control under changing loads. Varying loads
learned models are quite accurate. Error bars are obtainé . :
. T were randomly chosen with the constraint that out of the
by averaging between the six trials. o . )
ten inertial parameters of the last link / load, only five were

not zero. This was achieved by constraining both the center
of mass of the link and the load to lie on theaxis of
the link’s reference frame (see Fig. 4) such thatl,,, and

The models learned with any learning algorithm canndi»l»-. are zero. Furthermore, the off-diagonal elements of
be directly used for a load estimation task, since they d&e inertia tensor are zero. Out of the five non-zero inertial
not provide the regressor matrix that is needed (we ugearameters, three were identifiable and inferred: (mass),
the term regressor, although strictly it should only be usetlny (Product of mass and the y-position of center of mass)
for the original Y matrix). An option is to use a set of andI,., (moment of inertia around the x axis).
learned dynamicsg!, g% ... g™ corresponding to models

The six models learned in the previous section were

IV. LOAD ESTIMATION WITH LEARNED
DYNAMICS MODELS

with referenceloads with known inertial parametefs,, 77 In-1
.. . Since the regressor matriX is the shared between Man-1
different models, we can use eq. (4) to obtain: i

n

[ gtg?..g™ } = }7[ rlF2.Fm ] (12)

or more compactly:
G=YI (12)

Then, we can again solve a least squares problem to obtain
an estimate ol like:

o _ T T —1
Y =¢GII (HH ) (13) Fig. 4. In our experiments, both the center of mass of thelilaist/,, and

. . . . the loadl, are constrained to lie on the axis of the last link's reference
In an ideal scenario, with perfectly learned inverse madelgame, so that the center of mass of their unignalso lies on they axis.

we can use 11 models corresponding to manipulation of ob-

jects with linearly independent inertial parameters t0aibt e ran the simulation for 50 different trials (with random

a good estimate of". More realistically though, since it is |44s) and tried to estimate the inertial parameters of the
unlikely that the learned models are perfect, more aCC“raE%mpound last link / load. At the same time, the estimates
results can be expected while using meséerencemodels.  \yere ysed for applying control as in eq.(14). The nMSE of
Having estimates off’, we can do parameter estimationihe |oad parameter estimates, the average ratio of feedback

for novel loads using the method that we prefer (e.9. leagh composite command and the tracking error averaged over
squares). Subsequently, we can use the estiméteahd e 50 trials (incl. std.dev.), can be seen in Table I.
the inferred estimates of the inertial parameter for cdntro

purposes. Substituting the learned mogekith eq. 3, and . P Toon

using the estimated,,, instead of the actuat,,, the control [ nMSE 0.0006E0.0024 0.001GE0.0037 0.3278£1.0031

|aW Of eq_ (10) becomes: Joint 1 Joint 2 Joint 3

Ratio 0.0016£0.0009 0.101£0.0469 0.1095£0.05

. sk ek A . ) Joint 1 Joint 2 Joint 3

e = (07 4 G )+ Yn 47 G G )Tt P(g7 —q0) +D(d7 —de) Trerr. | 0.0000090.000009 | 0.00036£0.00035 | 0.00020%0.00019

(14)

Furthermore,Y” could be used with a numerical procedure TABLE |

like SVD for classifying the identifiability of the inertial AccurAacY oF LOAD ESTIMATION, RATIO OF FEEDBACK TO COMPOSITE

parameters of the last link / load. COMMAND AND TRACKING ERROR

The above discussion considered the use of torque sensing
at all joints. If the wrist force / torque sensor method isdjse
then one could still learn a model that maps from jointangles The accuracy of the estimates ©f,, andm,l,, is very
velocities and accelerations to forces and torques measutgigh, wheread,,... is less accurately estimated. The ratio of
at the wrist. Given a sufficient number of learned modeldeedback to composite command as well as the tracking error
the regressor matrix can again be estimated and be used i®mas low as in the case where a single learned model of the
load estimation. However, for control purposes, the inmersarm dynamics with a single load was used for control (cf.
model of the robot will also have to be learned and anothdtig. 3, verifying that the estimated parameters are aceurat
regressor matrix will have to be estimated. enough for control purposes.



nMSE of estimated inertial parameters

The same task was repeated for the case of randormr

changing, non-stationary loads. This is a more difficult  oos MMSE of m, 004 ~ MSEofml, 05 MMSE Of |
scenario to handle than the one with stationary loads, sinc 008 04

there may be large errors during switches between loady 03

especially when using the estimated parameters for corz o 002 02

posite control. The bottom part of Fig. 5 shows a typica oo 001 o

behavior for the non-stationary mass estimation. The tdip he

plots the corresponding feedback and feedforward comman ®Soor 005 02 ® oot 005 02 ° oo 005 02
using the estimated parameters, nicely showing that, wit Ratio of feedback to composite command

the exception of the spikes at the transition, the feedbac ©# o 08 7ot 08 ot

command constantly stays close to zero. Statistics for tt
accuracy of the estimates, contribution of feedback comimar

0.6 0.6 0.6

and tracking error averaged over the multiple trials are §os 04 04

given in Table Il. The accuracy of the estimates is lowe

than in the case of stationary loads, since our estimatt * ° °

are inevitably inaccurate for some short period after th om ol L e ol e

transition. However, they are still quite accurate as iatid

by the low feedback to composite command ratios. Fig. 6. Effect of imperfect dynamic models
5 e Fig. 6 shows the results of the experiment and as expected,
4 load estimation is less accurate as the accuracy of theddarn

Z’WF\/V*\N mwwwﬁf\f models decreases. Also, the ratio of feedback to compos-

ite command becomes higher. However, there is graceful
degradation of the performance, providing hope that such

Torque

alb estimation techniques maybe be used to bootstrap learning,
-2l o : - ; - control and parameter identification in an online, incretakn

) Time stép . x 10" Sett' ng .
0.09 V. NOT USING LABELED DYNAMICS

—— Real mass
—— Estimated mass
0.08 -

Previous evaluations and experiments relied on the fact
that adequate number of reference learned dynamic models
with known inertial parameters exists. In many cases, an
accurate estimate of the parameters, even for referends loa
may not be forthcoming. Can we avoid using the real inertial
os I s 2 25 parameters altogether? Consider introducing a linearstran

Time step «x10'  formation A and it's inverse between the regressor matrix
and the set of inertial parameters in eq.(4) like:

Mass

Fig. 5. Load estimation and control of non-stationary loatsp: contri-

bution of feedforward and feedback command. Bottom: redl estimated Y o p—1 f~
mass. T=Y(q, 4, A Az, (15)
Then eq. (12) becomes:
Mn Mnlny Inaa v A-1l AT
nMSE 0.0701:0.3871 0.1568t0.3980 1.1963t2.4451 G=YA Al (16)
Joint 1 Joint 2 Joint 3 .
Ratio 0.0066+0.0065 0.1343+0.0693 0.1643t0.0824 and we can group the terms as:
Joint 1 Joint 2 Joint 3 v A-1 -
Tr.err. | 0.000033:0.000034 | 0.00049:0.00044 | 0.00033:0.00036 G= (YA >(AH> (17)

In the case that we inférinertial parameters, if we have =

1+ 1 learned dynamic models and the vectors of the inertial

parameters for the different loads of the learned models are
Furthermore, the effect of using poorly learned dynamiinearly independent, then one can sH arbitrarily, to any

models was investigated. The same load estimation afidl rank matrix. Hence, instead of estimatirig, one can

control task with 50 random stationary loads was executezbtimateY A~! as:

using referencelearned dynamics models with nMSE of 1 BT AT AT ATN—1

around 0.05 as well as around 0.2, significantly higher than YA™ = GII"A™(ALIT A7) (18)

the average nMSE of 0.001 used in the previous experimeni&his estimate can be used for estimating the curvémf

This effect was produced by training the models with lesshich can be used with" A= for control. In this setup,

data. the estimated load is not an estimate of the actual load

TABLE I
LOAD ESTIMATION AND CONTROL IN A NON-STATIONARY LOAD TASK.



but an estimate of a linear transformation of the loadhe loads. Most importantly, there seems to be a graceful
However, when multiplied by the automatically appropiiiate degradation of the performance of the load estimates and
transformed regressor matrix, it gives the right model othe control performance in relation to the inaccuracieshef t
dynamics for the current load. In the case that there are molearned dynamic models.
modelsm than inertial parameters, we cannot initialize the An interesting extension would be to do automatic clas-
ATI matrix arbitrarily since there may be no exact mappingification of the identifiability of the inertial parameten$
A from the actual parametefs to the arbitrarily set matrix. the load or last link. Since a learned set of models with
Improper setting ofAIl would destroy the least squarestheir respective inertial parameters can give an estimate o
solution. A solution would be to kedpbase models and infer the actual regressor matrix, a sequence of estimates can
the inertial parameters for the rest — [ inertial parameters be used with a numerical algorithm like SVD to achieve
and put them together with the arbitrarily setparameters this. However, although in the case that analytically dsdiv
in the matrix AII. However, since these estimates will notdynamics are used, the zero singular values can be directly
be accurate and since they will in turn be used to estimatecorporated using the methods described in [4], in the
another quantityy’ A~!, it does not make much sense to usease that learned dynamics are used, the regressor matrix
more that/ + 1 models. will almost always not be singular (due to approximation
A. Experiments inaccurapiqs). In.thg case that the labels are not known and
' . - _the matrixY" A1 is inferred, SVD cannot be used anymore
The described procedure was empirically evaluated witfh getermine the number of identifiable inertial parameters
the same task as in the case_that we knew the inertighce the unknown linear transformatiofr! changes the
parameters of the load / last link of the arm. Howevergingylar values of”. A possibility in that case would be to

the accuracy of our estimates cannot be judged by comgy an incremental search, adding one model and one variable
paring them directly with the correct values. Instead, W 5 time until performance decreases.

used the estimates for control and accumulated statistics
on the contribution of the feedback command. This gives VII. ACKNOWLEDGEMENTS
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All,, was initialized as an upper triangular matrix, with all
elements above the diagonal set to 1. The ratio of feedback
to composite command and tracking error averaged over thB]
50 trials for the three different joints can be seen in Tallle |
The performance is similar to the case that labeled modelg;
are used, as in Table I.
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