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Abstract

In kernel-based regression learning, optimizing eachédendividually is useful
when the data density, curvature of regression surfacedg@sion boundaries)
or magnitude of output noise varies spatially. Previoudat@s suggested gradi-
ent descent techniques or complex statistical hypothesisads for local kernel
shaping, typically requiring-seme-amount.of-manual-tunihgheta parameters.
We introduce a Bayesian formulation of nonparametric regjom that, with the
help of variational approximations;-results-in-an.EM-likgaithm for simulta-
neous estimation of regression and kernel parameters. Ibstam is computa-
tionally efficient, requires ne sampling, automaticalljergs outliers and has only
one prior to be specified. It canbe used for nonparametriessgpn with local
polynomials or as a novel methedto achieve nonstationamgssion with Gaus-
sian processes. Our methods are _particularly useful fonileg control, where
reliable estimation of local tangent planes is essentiahflaptive controllers and
reinforcement learning. We evaluate ourmethods on sesgrdahetic data sets
and on an.actualrobot which learns a task-level control law.

1 Introduction

Kernel-basedmethods have been highly popularin statidéiarning, starting with Parzen windows,
kernel regression;-locally weightedregression and rduhals function networks, and leading to
newer formulations such’as Reproducing Kernel Hilbert pa&upport Vector Machines, and
Gaussian process.regression1]. Most algorithms stalnt patameterizations that are the same for
all kernels, independent of where'in.data space the kermsked, but later recognize the advantage
of locally adaptive kernels [2;.3, 4]. Such locally adapteznels are useful in scenarios where the
data characteristics vary greatly'in_different parts ofwekspace (e.g., in terms of data density,
curvature and output neise). For instance, in Gaussiarepsd&P) regression, using a nonstationary
covariancefunetion, e.g.,[5], allows/for such a treatm®etforming optimizations individually for
every kernel, however, becomes rather complex and is pmpoedrfitting due to a flood of open
parameters. Previous work has suggested gradient deschntdques with cross-validation methods
or involved statistical hypothesis testing for optimizing shape and size of a kernel in a learning
system [6, 7].

In-this paper, we considerilocal kernel shaping by averagirey data samples with the help of
locally'palynomial models and formulate this approach, Begesian framework, for both function
approximation_with piecewise linear models and nonstatiprGP regression. Our local kernel
shaping_algorithm-is computationally efficient (capablénahdling large data sets), can deal with
functions of-strongly varying curvature, data density amtbat noise, and even rejects outliers
automatically. Our.approach to nonstationary GP regragtiters from previous work by avoiding
Markov Chain Monte Carlo (MCMC) sampling [8, 9] and by expilog the full nonparametric
characteristics of GPs/in order to accommodate nonstatiatzda.
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One of the core application domains for our work is learniogtool, where computationally efficient
function approximation and highly accurate local lineatians from data are crucial for deriving
controllers and for optimizing control along trajectorj#8]. The high variations from fitting noise,
seen in Fig. 3, are harmful to the learning system, potéyitalusing the controller to be unstable.
Our final evaluations illustrate such a scenario by learmingnverse kinematics model for a real
robot arm.

2 Bayesian Local Kernel Shaping

We develop our approach in the context of nonparametricllioeeeighted regression with lo-
cally linear polynomials [11], assuming, for notationahgiicity, only a one-dimensional output—
extensions to multi-output settings are straightforwa¥de assume a training set &f samples,
D = {x;, yi}fvzl, drawn from a nonlinear functiop = f(x) + e that is contaminated with mean-
zero (but potentially heteroscedastic) noiseEach data sample consists ofl-alimensional input
vectorx; and an outpuy;. We wish to approximate a locally linear model of this funatiat a
query pointx, € R¢*! in order to make a predictiop, = b?x?, whereb € R¢*!. We assume
the existence of a spatially localized weighting keragl= K (x;,x,, h) that assigns a weight to
every{x;, y; } according to its Euclidean distance in input space from trerygpointx,. A popular
choice forK is the Gaussian kernel, but other kernels may be used as 11¢ll The bandwidth
h € R¥*! of the kernel is the crucial parameter that determines tba lmodel’s quality of fit. Our
goal is to find a Bayesian formulation of determiningndh simultaneously.

2.1 Mode

For the locally linear model at the query
point x,, we can introduce hidden ran-(c?
dom variable% [12] and modify the linear
modely; = bTx; so thaty; = anzlzim+

€, wherez;,, = bl x;,, + €,m ande.,, ~
Normal(0,¢..,), € ~ Normal(0,0?) are
both additive noise terms. Note tha},, =

[Zim 1] andb,, = [by, bmo]”, Wwherez;,,

is themth coefficient ofx;, b,, is themth
coefficient ofb andb,,q is the offset value.

The z variables allow us to derive Compur;q, e 1. Graphical model. Random variables are in

tatlonally efficientO(d) EM'l'ke. u.pdates, circles, and observed random variables are in shaded
as we will see later. The prediction at th%ouble circles

query pointx, is thenZﬁl bl x,.,. We as-
sume the following prior distributions for our model, shogmaphically in Fig. 1:

p(yi|zi) ~ Normal(1”z;, %) p(by|t2m) ~ Normal(0, 1., X, o)
P(Zim[Xim ) ~ Normal (b}, Xim, ¥2m) P(Ym) ~ Scaled-Invy® (1m0, Yzm,0)

wherel is a vector ofls, z; € R¥*1, z;, is themth coefficient ofz;, and 3,0 is the prior
covariance matrix ob,, and a2 x 2 diagonal matrix.n,q andaan0 are the prior parameters of
the Scaled-inversg? distribution ., is the number of degrees of freedom parametergng, is
the scale parameter). The Scaled-Invegdekistribution was used fap.,,, since it is the conjugate
prior for the variance parameter of a Gaussian distribution

In contrast to classical treatments of Bayesian weightgdession [13] where the weights enter
as a heteroscedastic correction on the noise variance bfdsa sample, wassociate a scalar
indicator-likeweight, w; € {0, 1}, with each sample {x;,y;} in D. The sample is fully included in
the local model ifw; = 1 and excluded ifv; = 0. We define the weight; to bew; = Hizl Wi,
wherew;,, is the weight componentin theth input dimension. While previous methods model the
weighting kernelK as some explicit function, we model the weights, as Bernoulli-distributed
random variables, i.ep(w;,,) ~ Bernoulli(g;,,), choosing a symmetric bell-shaped function for the
paramete;n: ¢im = 1/(1 4+ (Tim — Tgm)* hm). Tqm is themth coefficient ofx,, hy,, is themth



coefficient ofh, andr > 0 is a positive integét As pointed out in [11], the particular mathematical
formulation of a weighting kernel is largely computatidgairelevant for locally weighted learning.
Our choice of function foy;,,, was dominated by the desire to obtain analytically traetédmrning
updates. We place a Gamma prior over the bandwigdth(i.e., p(h,,) ~ Gamm&anmo, brmo)
whereay,,,o andby,,,o are parameters of the Gamma distribution) to ensure thasiiyeoweighting
kernel width.

2.2 Inference

We can treat the entire regression problem as an EM learmaigem [14, 15] and maximize the log
likelihoodlog p(y|X) for generating the observed data. We can maximize this iptetmlog likeli-
hood by maximizing the expected value of the complete lagjifkoodp(y, Z, b, w, h, 02,1, X) =
Hf\;lp(yi,zi,b,wi,h, 02,1,|x;). In our model, each data sampléas an indicator-like scalar
weight w; associated with it, allowing us to express the complete iloglihood L, in a similar
fashion to mixture models, as:

N d d
L= 1Og [H l[p(yilzia UQ)P(ZHXi,b,wz)] o H p(wim) H p(bm|¢zm)p(wzm)p(hm)p(02)

i=1 m=1 m=1
Expanding thelog p(w;,,) term from the expression above results in a problematiog(1 +
(Tim — xqm)zr) term that prevents us from deriving an analytically tratgadxpression for the
posterior ofh,,. To address this, we use a variational approach on concawedx functions sug-
gested by [16] to produce analytically tractable expressioWe can find a lower bound on the
term so that-log(1 + (Zim — Tgm)*") = —Xim (Tim — xqm)gr hm, Where\,,, is a variational
parameter to be optimized in the M-step of our final EM-likgaalthm. Our choice of weighting
kernel allows us to find a lower bound foin this manner. We explored the use of other weighting
kernels (e.g., a quadratic negative exponential), but bsuleis with finding a lower bound to the
problematic terms ifog p(w;,,) such that analytically tractable inference foy, could be done.
The resulting lower bound té is L; due to lack of space, we give the expressionfdn the ap-
pendix. The expectation df should be taken with respect to the true posterior distiobuof all
hidden variable€)(b, v, z, h). Since this is an analytically tractable expression, a tdwaind
can be formulated using a technique from variational caEuwhere we make a factorial approxi-
mation of the true posterior, e.g) (b, v¢.,z,h) = Q(b,¢.)Q(h)Q(z) [15], that allows resulting
posterior distributions over hidden variables to beconayaitally tractable: The posterior af;,,,,
P(Wim = 1|4, 2i, X3, 0, w; £m ), IS inferred using Bayes’ rule:

d .
(i, Zi|Xi, 0, Wi kot Wi = DITeer e (Wit) p (= 1)

1)
P(Yi, 2 |Xi, 0, Wi ktn, Wi, = 1)Hf:1"¢m<wit>p(wim = 1) + p(wim = 0)

where® = {b,v.,h} andw; i, denotes the set of weigh{mk}izl_’k#m. For the dimension
m, we account for the effect of weights in the oth&r- 1 dimensions. This is a result af;

being defined as the product of weights in all dimensions. pbterior mean ofv;,, is then

(P(Wirn = 1|Yi, 2i, Xi, 0, W5 p£m)), and(w;) = HZ@:1 (wim), where(.) denotes the expectation

operator. We omit the full set of posterior EM update equetifplease refer to the appendix for
this) and list only the posterior updates foy,, wi.,, b, andz;:

N
_ ‘I’zN 1 ‘I’zN ‘I,ZN
b, = (Ebi,o + Z <w1> Ximx?m) Ezi\yi-,xi = (w;) T s ( (w;) 11" (w;) )
7‘:1 1 1 1 1

N T
(b} = S, (Z (w3) (i) xim> (zi) = 2=vL <1d,d - M) bx;

P S; <wl> S (wi)

d ws
QimApk:Lk#M ! apmo + N — Zj\il (Wim,)
QimAi k=1,kzm Wik 1= Gim bhmo + Zi:l Nim. (xzm — Tgm

)27’

Yaim — zqm) is taken to the powedr in order to ensure that the resulting expression is posifgiusting
r affects how long the tails of the kernel are. We use 2 for all our experiments.



wherel, 4 is ad x d identity matrix,bx; is ad by 1 vector with coefficients{bm)T Xim, (W) =
1%, (wim), ®.x is a diagonal matrix with). v on its diagonals; = o2 + 1T‘<%1§1 (to avoid di-

m=1
vision by zero{w;) needs to be capped to some small non-zero vajug)= \im = 1/(14 (zim —
Tqm)?" (b)), andA; = N(y; 17 (z;) , 0?) Hd N (Zim; (b)) Xim, 12m). Closer examination

of the expression fofb,,,) shows thatitis a stgnciard Bayesian weighted regressicatepti3], i.e.,

a data samplewith lower weightw; will be downweighted in the regression. Since the weighas ar
influenced by the residual error at each data point (see mmstgpdate for(w;,,)), an outlier will

be downweighted appropriately and eliminated from thelloezdel. Fig. 2 shows how local kernel

shaping is able to ignore outliers that a classical GP fits.

A few remarks should be made regarding the initializatiopradrs 3 Training data
used in the posterior EM update&,,, o can be set td0°I to 25 —Stationary GP
reflect a large uncertainty associated with the prior distion of Jd - (—Kernel Shaping
b. The initial noise variance}.,, o, should be set to the best guess 5
on the noise variance. To adjust the strength of this prigg, can ¥
be set to the number of samples one believes to have seen wijl
noise variance)., o Finally, the initial 1 of the weighting kernel
should be set so that the kernel is broad and wide. We usesvafue _
@hmo = brmo = 1076 so thath,,o = 1 with high uncertainty. Note - . -

that some sort of initial belief about the noise level is rezbtb X

distinguish between noise and structure in the training.daside Figure 2: Effect of outliers (in
from the initial prior ony.,,, we used the same priors for all datg|;ck circles)

sets in our evaluations.

0.5

2.3 Computational Complexity

For one local model, the EM update equations heeemputational complexity of O(Nd) per EM
iteration, whered is the number input dimensions antis the size of the training set. This efficiency
arises from the introduction of the hidden random variallesvhich allows(z;) andX,, |, «, to

be computed irO(d) and avoids al x d matrix inversion which would typically requir€(d?).
Some nonstationary GP methods, e.g., [5], reqait&/®) + O(N?) for training and prediction,
while other more efficient stationary GP methods, e.g.,,[i&quireO(M?2N) + O(M?) training
and prediction costs (whefd << N is the number of pseudoinputs used in [17]). Our algorithm
requiresO(NdIgnr), wherelg,, is the number of EM iterations—with a maximal cap 18f00
iterations used. Our algorithm also does not require any NDG3dmpling as in [8, 9], making it
more appealing to real-time applications.

3 Extension to Gaussian Processes

We can apply the algorithm in section 2 not only to locally gfged learning with linear models, but
also to derive a nonstationary GP method. A GP is defined byaaraed and a covariance function,
where the covariance functiali captures dependencies between any two points as a fundtion o
the corresponding inputs, i.é:(x;,x;) = cov(f(xi),f(x;)), wherei, j = 1,.., N. Standard GP
models use a stationary covariance function, where theriem@e between any two points in the
training data is a function of the distand&s — x|, not of their locations. Stationary GPs perform
suboptimally for functions that have different properties/arious parts of the input space (e.g.,
discontinuous functions) where the stationary assumgéitsto hold. Various methods have been
proposed to specify nonstationary GPs. These include dgfeninonstationary Matérn covariance
function [5], adopting a mixture of local experts approatB,[8, 9] to use independent GPs to
cover data in different regions of the input space, and usindfidimensional scaling to map a
nonstationary spatial GP into a latent space [19].

Given the data sdD drawn from the functioly = f(x)+¢, as previously introduced in section 2, we
propose an approach to specify a nonstationary covariamcgiéon. Assuming the use of a quadratic
negative exponential covariance function, the covaridnoetion of a stationary GP i(x;,x;) =

02 exp(—=0.5 % | hon (@i — %,,)?) 4 vo, where the hyperparametes, , h, ..., ha, vo, v1 } are



optimized. In a nonstationary GP, the covariance functioulat then take the forfk(x;, x;) =
v} exp (—0.5 Z‘fn:l (Tim, — Tjm)? %) +vg, Whereh,,,, is the bandwidth of the local model
centered atr;,, andh;,, is the bandwidth of the local model centeredcaf,. We learn first the

values of{him}izl for all training data samples = 1,..., N using our proposed local kernel
shaping algorithm and then optimize the hyperparameteasdv,. To make a prediction for a test

samplex,, we learn also the values @hqm}zlzl, i.e., the bandwidth of the local model centered at
x4. Importantly, since the covariance function of the GP iswel from locally constant models, we
learn with locally constant, instead of locally linear, pobmials. We use = 1 for the weighting
kernel in order keep the degree of nonlinearity consistatit that in the covariance function (i.e.,
quadratic). Even though the weighting kernel used in thall&ernel shaping algorithm is not a
guadratic negative exponential, it has a similar bell shapewith a flatter top and shorter tails.
Because of this, our augmented GP is an approximated forrmohatationary GP. Nonetheless,
it is able to capture nonstationary properties of the funrcji without needing MCMC sampling,

unlike previously proposed nonstationary GP methods [8, 9]

4 Experimental Results

4.1 Synthetic Data

First, we show our local kernel shaping algorithm’s bandivadaptation abilities on several syn-
thetic data sets, comparing it to a stationary GP and ourgsegh augmented nonstationary GP.
For the ease of visualization, we consider the following-dmeensional functions, similar to those
in [5]: i) a function with a discontinuity, ii) a spatially lromogeneous function, and iii) a straight
line function. The data set for function i) consists of 25ining samples, 201 test inputs (evenly
spaced across the input space) and output noiseswith 0.3025; the data set for function ii) con-
sists of 250 training samples, 101 test inputs and an ouipoéisto-noise ratio (SNR) of 10; and
the data set for function iii) has 50 training samples, 21itgsits and an output SNR of 100.

Fig. 3 shows the predicted outputs of a stationary GP, autgderonstationary GP and the local
kernel shaping algorithm for data sets i)-iii). The locatr& shaping algorithm smoothes over
regions where a stationary GP overfits and yet, it still masag capture regions of highly varying
curvature, as seen in Figs. 3(a) and 3(b). It correctly asljie bandwidthé with the curvature
of the function. When the data looks linear, the algorithrermpup the weighting kernel so that
all data samples are considered, as Fig. 3(c) shows. Oupgedpaugmented nonstationary GP
also can handle the nonstationary nature of the data setelhsand its performance is quantified
in Table 1. Returning to our motivation to use these algorgho obtain linearizations for learning
control, itis important to realize that the high variatidran fitting noise, as shown by the stationary
GP in Fig. 3, are detrimental for learning algorithms, asdlope (or tangent hyperplane, for high-
dimensional data) would be wrong.

Table 1 reports the normalized mean squared predictiom GiMSE) values for function i) and
function ii) data sets, averaged over 20 random data segs.4Fshows results of the local kernel
shaping algorithm and the proposed augmented nonstaji@taron the “real-world” motorcycle
data set [20] consisting of 133 samples (with 80 equally sgacput query points used for predic-
tion). We also show results from a previously proposed MCh#Sed nonstationary GP method: an
alternate infinite mixture of GP experts [9]. We can see thataugmented nonstationary GP and
the local kernel shaping algorithm both capture the leftrflatter region of the function, as well as
some of the more nonlinear and noisier regions after 30msec.

4.2 Robot Data

Next, we move on to an example application: learning an sezkmematics model for a 3 degree-of-
freedom (DOF) haptic robot arm (manufactured by SensAbleys in Fig. 5(a)) in order to control
the end-effector along a desired trajectory. This willallas to verify that the kernel shaping algo-

2This is derived from the definition ok as a positive semi-definite matrix, i.e. where the integgahie
product of two quadratic negative exponentials—one wittapeeterh;,, and the other with paramet&g,, .
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Figure 3: Predicted outputs using a stationary GP, our antgdenonstationary GP and local kernel
shaping. Figures on the bottom show the bandwidths learitddal kernel shaping and the corre-
sponding weighting kernels (in dotted black lines) for inguery points (shown in red circles).

rithm can successfully deal with a large, noisy real-wodiadset with outliers and non-stationary
properties—typical characteristics of most control Ié&agrproblems.

We collecteds0, 000 data samples from the arm while it performed random sina$ombvements
within a constrained box volume of Cartesian space. Eaclpkaconsists of the arm’s joint angles
q, joint velocitiesq, end-effector position in Cartesian spaceand end-effector velocities. From
this data, we first learn a forward kinematics modek= J(q)q, whereJ(q) is the Jacobian matrix.
The transformation frong to x can be assumed to be locally linear at a particular configurat
of the robot arm. We learn the forward model using kernel sttgpbuilding a local model around
each training point only if that point is not already suffitlg covered by an existing local model
(e.g., having an activation weight of less than 0.2). Usirgights into robot geometry, we localize
the models only with respect tp while the regression of each model is trained only on a mappin
from ¢ to x—these geometric insights are easily incorporated assiriche Bayesian model. This
procedure resulted if6 models being built to cover the entire space of training.data

We artificially introduce a redundancy in our inverse kindosgaproblem on the 3-DOF arm by
specifying the desired trajectofy, x) only in terms ofz, z positions and velocities, i.e., the move-
ment is supposed to be in a vertical plane in front of the roBaglytically, the inverse kinematics
equation isy = J#(q)x — a(I— J#J)g—g, whereJ#(q) is the pseudo-inverse of the Jacobian. The
second term is an optimal solution to the redundancy projgrcified here by a cost functign

in terms of joint angles;. To learn a model fod#, we can reuse the local regions@from the
forward model, wherd# is also locally linear. The redundancy issue can be solveadppying

an additional weight to each data point according to a reviwardtion [21]. In our case, the task is
specified in terms of, 2}, so we define a reward based on a desiredordinatey,.s, that we

would like to enforce as a soft constraint. Our reward funreis g = e~ 3/ (k(Waes=1)=9) where

k is a gain andh specifies the steepness of the reward. This ensures thadire Inverse model
chooses a solution which produceg ghat pushes thg coordinate toward;;.s. We invert each
forward local model using a weighted linear regression,r@teach data point is weighted by the
weight from the forward model and additionally weighted bg teward.

We test the performance of this inverse model (Learnt IK) figare-eight tracking task as shown
in Fig. 5(b). As seen, the learnt model performs as well aattadytical inverse kinematics solution
(IK), with root mean squared tracking errors in positionsl aelocities very close to that of the



Table 1: Average normalized mean squared prediction egloreg, for a stationary GP model, our
augmented nonstationary GP, local kernel shaping—avem@agg 20 random data sets.

Method Function i) Function ii)
Stationary GP 0.1251 £ 0.013 | 0.0230 4 0.0047
Augmented nonstationary G 0.0110 + 0.0078 | 0.0212 4+ 0.0067
Local Kernel Shaping 0.0092 £ 0.0068 | 0.0217 +0.0058
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Figure 4: Motorcycle impact data set from [20], with predittresults shown for our augmented
GP and local kernel shaping algorithms. Results from therradite infinite mixture of GP experts
(AIMOGPE) are taken from [9].

analytical solution. This demonstrates that kernel stijsiran effective learning algorithm for use
in robot control learning applications.

Applying any arbitrary nonlinear regression method (such @P) to the inverse kinematics problem
would, in fact, lead to unpredictably bad performance. Tiveise kinematics problem is a one-to-
many mapping and requires careful design of a learning prold avoid problems with non-convex
solution spaces [22]. Our suggested method of learningiinations with a forward mapping
(which is a proper function), followed by learning an innersapping within the local region of
the forward mapping, is one of the few clean approaches tpibielem. Instead of using locally
linear methods, one could also use density-based estimigtitiniques like mixture models [23].
However, these methods must select the correct mode in twdarive at a valid solution, and
this final step may be computationally intensive or involeifistics. For these reasons, applying
a MCMC-type approach or GP-based method to the inverse kitiesrproblem was omitted as a
comparison.

5 Discussion

We presented a full Bayesian treatment of nonparametrad loalti-dimensional kernel adaptation
that simultaneously estimates the regression and kernaegers. The algorithm can also be inte-
grated into nonlinear algorithms, offering a valuable aasifile tool for learning. We show that our
local kernel shaping method is particularly useful for téag control, demonstrating results on an
inverse kinematics problem, and envision extensions teersomplex problems with redundancy,

Desired Desired
0.2 Analytical IK 0.2 Learnt IK

z (m)

-0.1
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 005 01
X (m) x (m)
(a) Robot arm (b) Desired versus actual trajectories

Figure 5: Desired versus actual trajectories for SensAbsnEbm robot arm
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e.g.

, learning inverse dynamics models of complete hundgamtiots. Note that our algorithm re-

quires only one prior be set by the user, i.e., the prior onatiput noise. All other biases are
initialized the same for all data sets and kept uninforneatia its current form, our Bayesian kernel
shaping algorithm is built for high-dimensional inputs doéts low computational complexity—

it scales linearly with the number of input dimensions. Hegre numerical problems may arise
in case of redundant and irrelevant input dimensions. Eutark will address this issue through

the

use of an automatic relevant determination feature e(dtiture extensions include an online

implementation of the local kernel shaping algorithm.
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